写一个CNN数字识别的c++程序
时间: 2024-03-05 08:47:34 浏览: 72
好的,以下是一个简单的CNN数字识别的C++程序:
```c++
#include <iostream>
#include <fstream>
#include <vector>
#include <cmath>
using namespace std;
// 定义卷积核,大小为3*3
const int kernelSize = 3;
const int kernel[kernelSize][kernelSize] = {
{-1, -1, -1},
{-1, 8, -1},
{-1, -1, -1}
};
// 定义图像大小
const int imageSize = 28;
// 定义卷积后的图像大小
const int convSize = imageSize - kernelSize + 1;
// 定义池化操作的大小
const int poolSize = 2;
// 定义池化后的图像大小
const int poolConvSize = convSize / poolSize;
// 定义全连接层的大小
const int fcSize = 10;
// 定义输入图像
int image[imageSize][imageSize];
// 定义卷积后的图像
int convImage[convSize][convSize];
// 定义池化后的图像
int poolImage[poolConvSize][poolConvSize];
// 定义全连接层的权重
int fcWeights[poolConvSize * poolConvSize][fcSize];
// 定义全连接层的偏置
int fcBiases[fcSize];
// 定义softmax函数
void softmax(float *output)
{
float sum = 0;
for (int i = 0; i < fcSize; i++)
{
output[i] = exp(output[i]);
sum += output[i];
}
for (int i = 0; i < fcSize; i++)
{
output[i] /= sum;
}
}
// 读取图像文件
void readImage(string filename)
{
ifstream file(filename.c_str(), ios::binary);
if (!file.is_open())
{
cout << "Error: cannot open file " << filename << endl;
exit(1);
}
char buffer[16];
file.read(buffer, 16);
for (int i = 0; i < imageSize; i++)
{
for (int j = 0; j < imageSize; j++)
{
unsigned char pixel;
file.read((char*)&pixel, sizeof(pixel));
image[i][j] = pixel;
}
}
file.close();
}
// 卷积操作
void convolve()
{
for (int i = 0; i < convSize; i++)
{
for (int j = 0; j < convSize; j++)
{
int sum = 0;
for (int k = 0; k < kernelSize; k++)
{
for (int l = 0; l < kernelSize; l++)
{
sum += kernel[k][l] * image[i + k][j + l];
}
}
convImage[i][j] = sum;
}
}
}
// 池化操作
void pool()
{
for (int i = 0; i < poolConvSize; i++)
{
for (int j = 0; j < poolConvSize; j++)
{
int maxVal = 0;
for (int k = 0; k < poolSize; k++)
{
for (int l = 0; l < poolSize; l++)
{
maxVal = max(maxVal, convImage[i * poolSize + k][j * poolSize + l]);
}
}
poolImage[i][j] = maxVal;
}
}
}
// 加载全连接层的权重和偏置
void loadWeightsAndBiases()
{
ifstream file("weights.bin", ios::binary);
if (!file.is_open())
{
cout << "Error: cannot open file weights.bin" << endl;
exit(1);
}
for (int i = 0; i < poolConvSize * poolConvSize; i++)
{
for (int j = 0; j < fcSize; j++)
{
file.read((char*)&fcWeights[i][j], sizeof(fcWeights[i][j]));
}
}
file.close();
file.open("biases.bin", ios::binary);
if (!file.is_open())
{
cout << "Error: cannot open file biases.bin" << endl;
exit(1);
}
for (int i = 0; i < fcSize; i++)
{
file.read((char*)&fcBiases[i], sizeof(fcBiases[i]));
}
file.close();
}
// 前向传播
void forward()
{
convolve();
pool();
float output[fcSize] = {0};
for (int i = 0; i < poolConvSize; i++)
{
for (int j = 0; j < poolConvSize; j++)
{
for (int k = 0; k < fcSize; k++)
{
output[k] += poolImage[i][j] * fcWeights[i * poolConvSize + j][k];
}
}
}
for (int i = 0; i < fcSize; i++)
{
output[i] += fcBiases[i];
}
softmax(output);
for (int i = 0; i < fcSize; i++)
{
cout << "Probability of " << i << ": " << output[i] << endl;
}
}
int main(int argc, char **argv)
{
if (argc < 2)
{
cout << "Usage: " << argv[0] << " image_file" << endl;
return 0;
}
readImage(argv[1]);
loadWeightsAndBiases();
forward();
return 0;
}
```
这个程序实现了一个简单的CNN数字识别器,它读取一个28*28的数字图像文件,使用一个3*3的卷积核进行卷积操作,然后使用一个2*2的池化操作,最后通过一个全连接层进行分类,使用softmax函数输出每个数字的概率。程序中的权重和偏置是预先训练好的。你可以将图像文件作为参数传递给程序来进行测试。
阅读全文