怎么将torch.use_deterministic_algorithms(True) 关闭
时间: 2024-02-11 17:09:56 浏览: 193
要关闭 `torch.use_deterministic_algorithms(True)`,可以调用 `torch.use_deterministic_algorithms(False)`。这将禁用 PyTorch 中的所有确定性算法。如果你只想关闭某个算子的确定性,可以在使用该算子时将 `warn_only=True`。例如:
```
with torch.backends.cudnn.flags(warn_only=True):
# 使用 adaptive_avg_pool2d_backward_cuda 算子的代码
```
这将禁用该算子的确定性,但是不会影响其它算子的确定性。请注意,关闭确定性算法可能会影响模型的可重复性和精度,所以需要根据实际情况进行取舍。
相关问题
解释一下def setup_seed(seed): # seed=42 torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) random.seed(seed) np.random.seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmard = False torch.random.manual_seed(seed)
这段代码是用于设置随机种子,确保实验的可重复性。在深度学习的任务中,涉及到随机性,如权重的初始化、数据的划分、数据增强等,都会对最终的结果产生影响。通过设置随机种子,可以保证每次运行程序时得到相同的随机数序列,从而使实验结果可重现。
具体来说,这段代码首先通过torch.manual_seed(seed)设置PyTorch的随机种子为给定的seed值。然后,通过判断torch.cuda.is_available()来确定是否使用GPU,如果可用,就分别通过torch.cuda.manual_seed(seed)和torch.cuda.manual_seed_all(seed)设置GPU的随机种子。
接下来,通过random.seed(seed)、np.random.seed(seed)和torch.random.manual_seed(seed)分别设置Python标准库中random模块、NumPy库和PyTorch中的随机模块的随机种子。
最后,通过设置torch.backends.cudnn.deterministic = True和torch.backends.cudnn.benchmark = False来确保使用GPU加速时的结果一致性。
总之,这段代码的作用是将各个随机模块的种子设置为相同的值,以确保实验的可重复性和结果的一致性。
seed=2 torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) torch.manual_seed(seed) torch.backends.cudnn.benchmark=False torch.backends.cudnn.deterministic=True os.environ["H5PY_DEFAULT_READONLY"] = "1"
这段代码展示了在PyTorch中设置随机数种子以及其他一些相关设置的方法。让我逐行解释一下:
```python
seed = 2
torch.manual_seed(seed)
```
这两行代码将PyTorch的随机数种子设置为2,确保在使用PyTorch时生成的随机数可重复。
```python
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
```
这两行代码将CUDA的随机数种子设置为2,确保在使用CUDA时生成的随机数可重复。`manual_seed_all`函数将种子应用于所有可用的GPU。
```python
np.random.seed(seed)
random.seed(seed)
```
这两行代码将NumPy和Python内置的随机数生成器的种子设置为2,确保在使用它们生成的随机数也可重复。
```python
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
```
这两行代码设置了PyTorch的CUDA加速库(cuDNN)的行为。`benchmark`被设置为`False`,以确保每次运行时的计算图优化策略保持一致。`deterministic`被设置为`True`,以确保每次运行时的计算结果都是确定性的。
```python
os.environ["H5PY_DEFAULT_READONLY"] = "1"
```
这一行代码设置了环境变量,将HDF5库(用于处理HDF5格式数据)默认以只读模式打开。
这些设置可以帮助确保在相同的随机数种子下,每次运行时生成的随机数序列和计算结果都是一致的,提供了更可重复和可控的实验环境。
阅读全文