adaboost的jupyter代码实现
时间: 2023-09-05 22:13:36 浏览: 105
以下是使用Python实现AdaBoost算法的示例代码:
```
import numpy as np
class AdaBoost:
def __init__(self, num_classifiers):
self.num_classifiers = num_classifiers
self.classifiers = []
self.alpha = []
def train(self, X, y):
n_samples, n_features = X.shape
weights = np.full(n_samples, (1 / n_samples))
for i in range(self.num_classifiers):
clf = DecisionTreeClassifier(max_depth=1)
clf.fit(X, y, sample_weight=weights)
y_pred = clf.predict(X)
error = np.sum(weights * (y != y_pred))
alpha = 0.5 * np.log((1 - error) / error)
weights *= np.exp(-alpha * y * y_pred)
weights /= np.sum(weights)
self.classifiers.append(clf)
self.alpha.append(alpha)
def predict(self, X):
predictions = []
for alpha, clf in zip(self.alpha, self.classifiers):
predictions.append(alpha * clf.predict(X))
return np.sign(np.sum(predictions, axis=0))
```
这个代码实现了一个简单的AdaBoost分类器,使用了sklearn中的DecisionTreeClassifier作为基本分类器。该算法需要指定基本分类器的数量(num_classifiers),并在训练时为每个分类器分配一个权重(alpha),以便对最终分类结果进行加权。在predict函数中,我们对每个分类器的预测结果进行加权,然后对结果进行符号函数处理以得到最终分类结果。
阅读全文