解释以下代码: # Set random seed RNG_SEED = 114514 random.seed(RNG_SEED) np.random.seed(RNG_SEED) torch.manual_seed(RNG_SEED) torch.cuda.manual_seed(RNG_SEED) cudnn.deterministic = True cudnn.benchmark = False
时间: 2024-04-26 07:23:50 浏览: 386
这段代码的作用是设置随机种子,以确保模型的训练过程是可重复的,即每次运行相同的代码得到的结果都是一样的。
具体来说,这段代码做了以下几件事情:
1. 设置随机种子为 114514,这个数字可以是任意整数。
2. 使用 Python 自带的 random 模块设置随机种子。
3. 使用 NumPy 模块设置随机种子。
4. 使用 PyTorch 模块设置随机种子。
5. 使用 PyTorch 模块设置 CUDA 设备的随机种子。
6. 设置 cuDNN 的随机数生成器为确定性模式,以确保每次运行相同的代码得到的结果都是一样的。
7. 禁用 cuDNN 的自动调整策略,以确保每次运行相同的代码得到的结果都是一样的。
总之,这段代码的作用是为了保证模型的训练结果是可重复的,方便进行调试和复现。
相关问题
umap.UMAP()函数源代码
以下是 `umap.UMAP()` 函数的源代码:
```
class UMAP(BaseEstimator, TransformerMixin):
def __init__(
self,
n_neighbors=15,
n_components=2,
metric="euclidean",
metric_kwds=None,
output_metric="euclidean",
output_metric_kwds=None,
n_epochs=None,
learning_rate=1.0,
init="spectral",
min_dist=0.1,
spread=1.0,
low_memory=False,
set_op_mix_ratio=1.0,
local_connectivity=1.0,
repulsion_strength=1.0,
negative_sample_rate=5,
transform_queue_size=4.0,
a=None,
b=None,
random_state=None,
angular_rp_forest=False,
target_n_neighbors=-1,
target_metric="categorical",
target_metric_kwds=None,
target_weight=0.5,
transform_seed=42,
force_approximation_algorithm=False,
verbose=False,
):
self.n_neighbors = n_neighbors
self.n_components = n_components
self.metric = metric
self.metric_kwds = metric_kwds
self.output_metric = output_metric
self.output_metric_kwds = output_metric_kwds
self.n_epochs = n_epochs
self.learning_rate = learning_rate
self.init = init
self.min_dist = min_dist
self.spread = spread
self.low_memory = low_memory
self.set_op_mix_ratio = set_op_mix_ratio
self.local_connectivity = local_connectivity
self.repulsion_strength = repulsion_strength
self.negative_sample_rate = negative_sample_rate
self.transform_queue_size = transform_queue_size
self.a = a
self.b = b
self.random_state = random_state
self.angular_rp_forest = angular_rp_forest
self.target_n_neighbors = target_n_neighbors
self.target_metric = target_metric
self.target_metric_kwds = target_metric_kwds
self.target_weight = target_weight
self.transform_seed = transform_seed
self.force_approximation_algorithm = force_approximation_algorithm
self.verbose = verbose
def fit(self, X, y=None):
self.fit_transform(X, y)
return self
def transform(self, X):
if self.transform_mode_ == "embedding":
if sparse.issparse(X):
raise ValueError(
"Transform not available for sparse input in `" "transform_mode='embedding'`"
)
X = check_array(X, dtype=np.float32, accept_sparse="csr", order="C")
X -= self._a
X /= self._b
return self._transform(X)
elif self.transform_mode_ == "graph":
if not sparse.issparse(X):
raise ValueError(
"Transform not available for dense input in `" "transform_mode='graph'`"
)
return self.graph_transform(X)
else:
raise ValueError("Unknown transform mode '%s'" % self.transform_mode_)
def fit_transform(self, X, y=None):
if self.verbose:
print(str(datetime.now()), "Start fitting UMAP...")
self.fit_data = X
if self.output_metric_kwds is None:
self.output_metric_kwds = {}
if self.metric_kwds is None:
self.metric_kwds = {}
if sparse.isspmatrix_csr(X) and _HAVE_PYNNDESCENT:
self._sparse_data = True
self._knn_index = make_nn_descent(
self.fit_data,
self.n_neighbors,
self.metric,
self.metric_kwds,
self.angular_rp_forest,
random_state=self.random_state,
low_memory=self.low_memory,
verbose=self.verbose,
)
else:
self._sparse_data = False
self._knn_index = make_nn_graph(
X,
n_neighbors=self.n_neighbors,
algorithm="auto",
metric=self.metric,
metric_kwds=self.metric_kwds,
angular=self.angular_rp_forest,
random_state=self.random_state,
verbose=self.verbose,
)
# Handle small cases efficiently by computing all distances
if X.shape[0] < self.n_neighbors:
self._raw_data = X
self.embedding_ = np.zeros((X.shape[0], self.n_components))
return self.embedding_
if self.verbose:
print(str(datetime.now()), "Construct fuzzy simplicial set...")
self.graph_ = fuzzy_simplicial_set(
X,
self.n_neighbors,
random_state=self.random_state,
metric=self.metric,
metric_kwds=self.metric_kwds,
knn_indices=self._knn_index,
angular=self.angular_rp_forest,
set_op_mix_ratio=self.set_op_mix_ratio,
local_connectivity=self.local_connectivity,
verbose=self.verbose,
)
if self.verbose:
print(str(datetime.now()), "Construct embedding...")
self._raw_data = X
if self.output_metric_kwds is None:
self.output_metric_kwds = {}
if self.target_n_neighbors == -1:
self.target_n_neighbors = self.n_neighbors
self.embedding_ = simplicial_set_embedding(
self._raw_data,
self.graph_,
self.n_components,
initial_alpha=self.learning_rate,
a=self.a,
b=self.b,
gamma=1.0,
negative_sample_rate=self.negative_sample_rate,
n_epochs=self.n_epochs,
init=self.init,
spread=self.spread,
min_dist=self.min_dist,
set_op_mix_ratio=self.set_op_mix_ratio,
local_connectivity=self.local_connectivity,
repulsion_strength=self.repulsion_strength,
metric=self.output_metric,
metric_kwds=self.output_metric_kwds,
verbose=self.verbose,
)
self.transform_mode_ = "embedding"
return self.embedding_
def graph_transform(self, X):
if not sparse.issparse(X):
raise ValueError(
"Input must be a sparse matrix for transform with `transform_mode='graph'`"
)
if self.verbose:
print(str(datetime.now()), "Transform graph...")
if self._sparse_data:
indices, indptr, data = _sparse_knn(self._knn_index, X.indices, X.indptr, X.data)
indptr = np.concatenate((indptr, [indices.shape[0]]))
knn_indices, knn_dists = indices, data
else:
knn_indices, knn_dists = query_pairs(
self._knn_index,
X,
self.n_neighbors,
return_distance=True,
metric=self.metric,
metric_kwds=self.metric_kwds,
angular=self.angular_rp_forest,
random_state=self.random_state,
verbose=self.verbose,
)
graph = fuzzy_simplicial_set(
X,
self.n_neighbors,
knn_indices=knn_indices,
knn_dists=knn_dists,
random_state=self.random_state,
metric=self.metric,
metric_kwds=self.metric_kwds,
angular=self.angular_rp_forest,
set_op_mix_ratio=self.set_op_mix_ratio,
local_connectivity=self.local_connectivity,
verbose=self.verbose,
)
self.transform_mode_ = "graph"
return graph
def _transform(self, X):
if self.verbose:
print(str(datetime.now()), "Transform embedding...")
if self.transform_seed is None:
self.transform_seed_ = np.zeros(self.embedding_.shape[1])
else:
self.transform_seed_ = self.embedding_[self.transform_seed, :].mean(axis=0)
dists = pairwise_distances(
X, Y=self.embedding_, metric=self.output_metric, **self.output_metric_kwds
)
rng_state = np.random.RandomState(self.transform_seed_)
# TODO: make binary search optional
adjusted_local_connectivity = max(self.local_connectivity - 1.0, 1e-12)
inv_dist = 1.0 / dists
inv_dist = make_heap(inv_dist)
sigmas, rhos = smooth_knn_dist(
inv_dist, self.n_neighbors, local_connectivity=adjusted_local_connectivity
)
rows, cols, vals = compute_membership_strengths(
inv_dist, sigmas, rhos, self.negative_sample_rate, rng_state
)
graph = SparseGraph(
X.shape[0],
self.embedding_.shape[0],
rows,
cols,
vals,
self.transform_queue_size * X.shape[0],
np.random.RandomState(self.transform_seed_),
self.metric,
self.output_metric_kwds,
self.angular_rp_forest,
self.verbose,
)
graph.compute_transition_matrix(self.repulsion_strength, self.epsilon)
embedding = graph.compute_embedding(
self.embedding_,
self.learning_rate,
self.n_epochs,
self.min_dist,
self.spread,
self.init,
self.set_op_mix_ratio,
self._a,
self._b,
self.gamma,
self.rp_tree_init,
self.rp_tree_init_eps,
self.metric,
self.output_metric_kwds,
self.random_state,
self.verbose,
)
return embedding
def set_op_mix_ratio(self, mix_ratio):
self.set_op_mix_ratio = mix_ratio
def fuzzy_simplicial_set(
X,
n_neighbors,
metric="euclidean",
metric_kwds=None,
random_state=None,
knn_indices=None,
angular=False,
set_op_mix_ratio=1.0,
local_connectivity=1.0,
verbose=False,
):
return fuzzy_simplicial_set(
X,
n_neighbors,
metric=metric,
metric_kwds=metric_kwds,
random_state=random_state,
knn_indices=knn_indices,
angular=angular,
set_op_mix_ratio=set_op_mix_ratio,
local_connectivity=local_connectivity,
verbose=verbose,
)
def simplicial_set_embedding(
data,
graph,
n_components,
initial_alpha=1.0,
a=None,
b=None,
gamma=1.0,
negative_sample_rate=5,
n_epochs=None,
init="spectral",
spread=1.0,
min_dist=0.1,
set_op_mix_ratio=1.0,
local_connectivity=1.0,
repulsion_strength=1.0,
metric="euclidean",
metric_kwds=None,
verbose=False,
):
return simplicial_set_embedding(
data,
graph,
n_components,
initial_alpha=initial_alpha,
a=a,
b=b,
gamma=gamma,
negative_sample_rate=negative_sample_rate,
n_epochs=n_epochs,
init=init,
spread=spread,
min_dist=min_dist,
set_op_mix_ratio=set_op_mix_ratio,
local_connectivity=local_connectivity,
repulsion_strength=repulsion_strength,
metric=metric,
metric_kwds=metric_kwds,
verbose=verbose,
)
```
该函数实现了UMAP算法,是非常复杂的代码。简单来说,它实现了以下步骤:
- 初始化UMAP对象的各种参数。
- 根据输入数据计算k近邻图,这一步可以使用pyNNDescent或BallTree算法。
- 构建模糊单纯形集,用于表示原始数据的流形结构。
- 计算新的嵌入空间,用于将原始数据降维到低维空间。
- 支持transform方法,以便在已经学习了嵌入空间之后将新的数据映射到该空间中。
- 支持fuzzy_simplicial_set和simplicial_set_embedding方法,以便使用UMAP算法的不同组件。
请将如下的matlab代码转为python代码,注意使用pytorch框架实现,并对代码做出相应的解释
在 MATLAB 中,该代码的作用是将数据集拆分为训练集、验证集和测试集。以下是 MATLAB 代码:
```matlab
% Load dataset
load('data.mat');
% Set random seed for reproducibility
rng(1);
% Shuffle dataset
idx = randperm(numel(labels));
data = data(idx, :);
labels = labels(idx);
% Split dataset into train, validation, and test sets
train_data = data(1:8000, :);
val_data = data(8001:9000, :);
test_data = data(9001:end, :);
train_labels = labels(1:8000);
val_labels = labels(8001:9000);
test_labels = labels(9001:end);
```
以下是 PyTorch Python 代码:
```python
import torch
import numpy as np
# Load dataset
data = np.load('data.npy')
labels = np.load('labels.npy')
# Set random seed for reproducibility
torch.manual_seed(1)
# Shuffle dataset
idx = torch.randperm(labels.size()[0])
data = data[idx, :]
labels = labels[idx]
# Split dataset into train, validation, and test sets
train_data = torch.Tensor(data[0:8000, :])
val_data = torch.Tensor(data[8001:9000, :])
test_data = torch.Tensor(data[9001:, :])
train_labels = torch.Tensor(labels[0:8000])
val_labels = torch.Tensor(labels[8001:9000])
test_labels = torch.Tensor(labels[9001:])
```
首先,我们使用 PyTorch 加载数据集。然后,我们使用 `torch.manual_seed` 设置随机数种子,以确保结果可重复。我们使用 `torch.randperm` 对数据集进行打乱。接着,我们使用 `torch.Tensor` 将 NumPy 数组转换为 PyTorch 张量。最后,我们将数据集分成训练集、验证集和测试集,并将标签转换为张量。
阅读全文