trainsets = pd.read_csv('/Users/zhangxinyu/Desktop/trainsets82.csv') testsets = pd.read_csv('/Users/zhangxinyu/Desktop/testsets82.csv')
时间: 2023-12-21 12:03:49 浏览: 72
这段代码读取了两个 csv 格式的数据集,trainsets 和 testsets。
pd 是 pandas(Python 数据分析库)的缩写,read_csv 是该库中用来读取 csv 格式文件的函数。其中,read_csv 函数的参数是数据集所在的路径,可以是相对路径或绝对路径。
这里的路径是 '/Users/zhangxinyu/Desktop/trainsets82.csv' 和 '/Users/zhangxinyu/Desktop/testsets82.csv',这意味着数据集文件存储在 Mac 操作系统用户 zhangxinyu 的桌面上。
读取数据集后,可以使用 pandas 库中的函数对数据进行预处理和分析。
相关问题
纠正代码:trainsets = pd.read_csv('/Users/zhangxinyu/Desktop/trainsets82.csv') testsets = pd.read_csv('/Users/zhangxinyu/Desktop/testsets82.csv') y_train_forced_turnover_nolimited = trainsets['m3_forced_turnover_nolimited'] X_train = trainsets.drop(['m3_P_perf_ind_all_1','m3_P_perf_ind_all_2','m3_P_perf_ind_all_3','m3_P_perf_ind_allind_1',\ 'm3_P_perf_ind_allind_2','m3_P_perf_ind_allind_3','m3_P_perf_ind_year_1','m3_P_perf_ind_year_2',\ 'm3_P_perf_ind_year_3','m3_forced_turnover_nolimited','m3_forced_turnover_3mon',\ 'm3_forced_turnover_6mon','m3_forced_turnover_1year','m3_forced_turnover_3year',\ 'm3_forced_turnover_5year','m3_forced_turnover_10year',\ 'CEOid','CEO_turnover_N','year','Firmid','appo_year'],axis=1) y_test_forced_turnover_nolimited = testsets['m3_forced_turnover_nolimited'] X_test = testsets.drop(['m3_P_perf_ind_all_1','m3_P_perf_ind_all_2','m3_P_perf_ind_all_3','m3_P_perf_ind_allind_1',\ 'm3_P_perf_ind_allind_2','m3_P_perf_ind_allind_3','m3_P_perf_ind_year_1','m3_P_perf_ind_year_2',\ 'm3_P_perf_ind_year_3','m3_forced_turnover_nolimited','m3_forced_turnover_3mon',\ 'm3_forced_turnover_6mon','m3_forced_turnover_1year','m3_forced_turnover_3year',\ 'm3_forced_turnover_5year','m3_forced_turnover_10year',\ 'CEOid','CEO_turnover_N','year','Firmid','appo_year'],axis=1) from sklearn.ensemble import RandomForestClassifier rfc = RandomForestClassifier(n_estimators=100, max_depth=10, random_state=42) rfc.fit(X_train, y_train_forced_turnover_nolimited) y_pred = rfc.predict_proba(X_test) # 计算AUC值 auc = roc_auc_score(y_test_forced_turnover_nolimited, y_pred) # 输出AUC值 print('测试集AUC值为:', auc)
trainsets = pd.read_csv('/Users/zhangxinyu/Desktop/trainsets82.csv')
testsets = pd.read_csv('/Users/zhangxinyu/Desktop/testsets82.csv')
y_train_forced_turnover_nolimited = trainsets['m3_forced_turnover_nolimited']
X_train = trainsets.drop(['m3_P_perf_ind_all_1','m3_P_perf_ind_all_2','m3_P_perf_ind_all_3','m3_P_perf_ind_allind_1',
'm3_P_perf_ind_allind_2','m3_P_perf_ind_allind_3','m3_P_perf_ind_year_1','m3_P_perf_ind_year_2',
'm3_P_perf_ind_year_3','m3_forced_turnover_nolimited','m3_forced_turnover_3mon',
'm3_forced_turnover_6mon','m3_forced_turnover_1year','m3_forced_turnover_3year',
'm3_forced_turnover_5year','m3_forced_turnover_10year','CEOid','CEO_turnover_N','year',
'Firmid','appo_year'], axis=1)
y_test_forced_turnover_nolimited = testsets['m3_forced_turnover_nolimited']
X_test = testsets.drop(['m3_P_perf_ind_all_1','m3_P_perf_ind_all_2','m3_P_perf_ind_all_3','m3_P_perf_ind_allind_1',
'm3_P_perf_ind_allind_2','m3_P_perf_ind_allind_3','m3_P_perf_ind_year_1','m3_P_perf_ind_year_2',
'm3_P_perf_ind_year_3','m3_forced_turnover_nolimited','m3_forced_turnover_3mon',
'm3_forced_turnover_6mon','m3_forced_turnover_1year','m3_forced_turnover_3year',
'm3_forced_turnover_5year','m3_forced_turnover_10year','CEOid','CEO_turnover_N','year',
'Firmid','appo_year'], axis=1)
from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier(n_estimators=100, max_depth=10, random_state=42)
rfc.fit(X_train, y_train_forced_turnover_nolimited)
y_pred = rfc.predict_proba(X_test)[:, 1] # 计算AUC值时需要使用预测结果的概率值而不是预测结果本身
from sklearn.metrics import roc_auc_score
auc = roc_auc_score(y_test_forced_turnover_nolimited, y_pred) # 计算AUC值
print('测试集AUC值为:', auc) # 输出AUC值
纠正这段代码:trainsets = pd.read_csv('/Users/zhangxinyu/Desktop/trainsets82.csv') testsets = pd.read_csv('/Users/zhangxinyu/Desktop/testsets82.csv') y_train_forced_turnover_nolimited = trainsets['m3_forced_turnover_nolimited'] X_train = trainsets.drop(['m3_P_perf_ind_all_1','m3_P_perf_ind_all_2','m3_P_perf_ind_all_3','m3_P_perf_ind_allind_1',\ 'm3_P_perf_ind_allind_2','m3_P_perf_ind_allind_3','m3_P_perf_ind_year_1','m3_P_perf_ind_year_2',\ 'm3_P_perf_ind_year_3','m3_forced_turnover_nolimited','m3_forced_turnover_3mon',\ 'm3_forced_turnover_6mon','m3_forced_turnover_1year','m3_forced_turnover_3year',\ 'm3_forced_turnover_5year','m3_forced_turnover_10year',\ 'CEOid','CEO_turnover_N','year','Firmid','appo_year'],axis=1) y_test_forced_turnover_nolimited = testsets['m3_forced_turnover_nolimited'] X_test = testsets.drop(['m3_P_perf_ind_all_1','m3_P_perf_ind_all_2','m3_P_perf_ind_all_3','m3_P_perf_ind_allind_1',\ 'm3_P_perf_ind_allind_2','m3_P_perf_ind_allind_3','m3_P_perf_ind_year_1','m3_P_perf_ind_year_2',\ 'm3_P_perf_ind_year_3','m3_forced_turnover_nolimited','m3_forced_turnover_3mon',\ 'm3_forced_turnover_6mon','m3_forced_turnover_1year','m3_forced_turnover_3year',\ 'm3_forced_turnover_5year','m3_forced_turnover_10year',\ 'CEOid','CEO_turnover_N','year','Firmid','appo_year'],axis=1) model = Sequential() model.add(Dense(64, activation='relu', input_dim=X_train.shape[1])) model.add(Dropout(0.5)) model.add(Dense(32, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) early_stopping = EarlyStopping(monitor='val_loss', patience=5, verbose=1) model_checkpoint = ModelCheckpoint('model.h5', monitor='val_loss', save_best_only=True, verbose=1) history = model.fit(X_train, epochs=50, batch_size=32, validation_data=(y_train_forced_turnover_nolimited), callbacks=[early_stopping, model_checkpoint]) model.load_weights('model.h5') pred = model.predict(X_test) auc = roc_auc_score(test.iloc[:, -1], pred) print('Testing AUC:', auc)
纠正后的代码如下:
```
import pandas as pd
from sklearn.metrics import roc_auc_score
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
trainsets = pd.read_csv('/Users/zhangxinyu/Desktop/trainsets82.csv')
testsets = pd.read_csv('/Users/zhangxinyu/Desktop/testsets82.csv')
y_train_forced_turnover_nolimited = trainsets['m3_forced_turnover_nolimited']
X_train = trainsets.drop(['m3_P_perf_ind_all_1', 'm3_P_perf_ind_all_2', 'm3_P_perf_ind_all_3', 'm3_P_perf_ind_allind_1',
'm3_P_perf_ind_allind_2', 'm3_P_perf_ind_allind_3', 'm3_P_perf_ind_year_1', 'm3_P_perf_ind_year_2',
'm3_P_perf_ind_year_3', 'm3_forced_turnover_nolimited', 'm3_forced_turnover_3mon',
'm3_forced_turnover_6mon', 'm3_forced_turnover_1year', 'm3_forced_turnover_3year',
'm3_forced_turnover_5year', 'm3_forced_turnover_10year', 'CEOid', 'CEO_turnover_N', 'year',
'Firmid', 'appo_year'], axis=1)
y_test_forced_turnover_nolimited = testsets['m3_forced_turnover_nolimited']
X_test = testsets.drop(['m3_P_perf_ind_all_1', 'm3_P_perf_ind_all_2', 'm3_P_perf_ind_all_3', 'm3_P_perf_ind_allind_1',
'm3_P_perf_ind_allind_2', 'm3_P_perf_ind_allind_3', 'm3_P_perf_ind_year_1', 'm3_P_perf_ind_year_2',
'm3_P_perf_ind_year_3', 'm3_forced_turnover_nolimited', 'm3_forced_turnover_3mon',
'm3_forced_turnover_6mon', 'm3_forced_turnover_1year', 'm3_forced_turnover_3year',
'm3_forced_turnover_5year', 'm3_forced_turnover_10year', 'CEOid', 'CEO_turnover_N', 'year',
'Firmid', 'appo_year'], axis=1)
model = Sequential()
model.add(Dense(64, activation='relu', input_dim=X_train.shape[1]))
model.add(Dropout(0.5))
model.add(Dense(32, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
early_stopping = EarlyStopping(monitor='val_loss', patience=5, verbose=1)
model_checkpoint = ModelCheckpoint('model.h5', monitor='val_loss', save_best_only=True, verbose=1)
history = model.fit(X_train, y_train_forced_turnover_nolimited, epochs=50, batch_size=32, validation_data=(X_test, y_test_forced_turnover_nolimited),
callbacks=[early_stopping, model_checkpoint])
model.load_weights('model.h5')
pred = model.predict(X_test)
auc = roc_auc_score(y_test_forced_turnover_nolimited, pred)
print('Testing AUC:', auc)
```
主要的改动有:
1. 加载了 roc_auc_score 函数,用于计算模型的 AUC 值。
2. 在 model.fit() 函数中添加了标签 y_train_forced_turnover_nolimited 和 validation_data 参数,用于训练和验证模型。
3. 将测试数据集的标签改为 y_test_forced_turnover_nolimited,用于计算模型的 AUC 值。
4. 在 print() 函数中输出了模型的 AUC 值。
阅读全文