基于labview的双通道虚拟示波器设计vi

时间: 2023-05-14 10:03:45 浏览: 83
基于LabVIEW的双通道虚拟示波器设计VI的主要任务是基于收集的模拟信号数据生成波形图表,并显示在计算机屏幕上,再通过软件进行信号特征分析、过滤、采集、储存等操作。该设计VI可以设置图表缩放、显示控制等操作,方便用户实现对收集的信号数据的分析、处理和储存。 首先,需要在LabVIEW界面中设计GUI,设定数据源、采样间隔、缩放比例与显示等参数,创建一个按键进行开始/停止数据采集。其次,通过图形显示控制器来创建两个波形控件,并设置其相应的属性,如颜色、线型、更新率等。此外,还需编写数据获取、处理和储存等功能模块,包括调节Y轴的范围、记录波形数据、设置触发方式等。最后,将所有模块进行连接,使得整个VI的功能能够得以实现。 总之,基于LabVIEW的双通道虚拟示波器设计VI需要结合图形界面、数据处理和计算机控制等多方面的技术,其设计实现对实验数据的观测和处理能够非常高效、精确和快速。同时,做好VI开发过程中的文档记录、测试和调试等工作也是非常重要的。这种VI技术应用广泛,可被广泛应用于工程技术、计算机控制、自动化控制等领域。
相关问题

基于labview的双通道虚拟示波器设计

### 回答1: LabVIEW是一个强大的图形化编程环境,可以用于设计各种类型的测量和控制系统。在LabVIEW中,您可以使用图形化模块和工具快速设计和实现双通道虚拟示波器。 首先,您需要了解LabVIEW的基础知识,如图形化编程,数据流,控制结构等。然后,您可以使用LabVIEW中的图形化模块和工具来设计和实现双通道虚拟示波器。 在LabVIEW中,您可以使用图形化模块来读取数据,并使用图形化工具来显示数据。例如,您可以使用“模拟读取”模块读取数据,并使用“波形图”工具显示数据。 此外,您还可以使用LabVIEW中的图形化模块和工具来设置示波器的参数,如采样率,增益,偏移等。 总之,基于LabVIEW的双通道虚拟示波器设计是一个非常有趣的项目,您可以通过学习LabVIEW的基础知识和使用图形化模块和工具来实现它。 ### 回答2: 基于labview的双通道虚拟示波器是一种用于实时监测和分析电子信号的电子仪器。它主要是以软件为主,通过硬件设备来将电子信号转换成数字信号,最终在计算机屏幕上显示成图像。LabVIEW是国际上流行的电子工程软件,它提供了一套完整的软件开发环境,可以很方便地实现双通道虚拟示波器的设计。 双通道虚拟示波器一般由以下基本模块组成:输入信号采集模块、信号处理模块和图像显示模块。输入信号采集模块通过连接夹具等硬件,将电路中的信号采集到计算机中。信号处理模块对输入的信号进行预处理,包括增益调节、滤波、放大、采样等。图像显示模块将处理好的信号在屏幕上以波形的形式显示出来,方便工程师进行实时监测和分析。 在实现双通道虚拟示波器的设计中,需要注意以下几点。首先,输入信号的采集模块和信号处理模块的选择需要根据具体需求进行选择,在使用过程中要注意时序和信号质量的稳定性。其次,信号处理模块中需要注意信号放大时不要引入过多的噪声,同时还要进行滤波,以滤除不必要的高频噪声。最后,在图像显示时,需要注意设计合适的缩放比例,方便工程师对信号波形进行细致的观察。 总的来说,双通道虚拟示波器是电子工程师经常使用的一种实验工具,它的实现基于labview软件和硬件采集模块的集成,可以快速准确地采集电子信号,进行分析和处理,并以波形的形式展示在计算机屏幕上,对工程师的实验分析工作有很大的帮助。 ### 回答3: 虚拟示波器是一种电子测量仪器,通过计算机的软件和硬件技术,可以将模拟电信号转换为数字信号进行处理和显示。虚拟示波器具有体积小、价格低廉、功能强大等优势,因此在工业自动化控制、教学研究等领域得到广泛的应用。 基于labview的双通道虚拟示波器设计,是基于国际著名的数据采集软件labview,采用虚拟仪器(VI)技术,通过模块化建立图形化界面,实现对电信号测量、分析及模拟的功能。其主要设计思路如下: 1. 确定系统要求,确定硬件平台:首先要明确测量要求,例如测量的最大频率、电压范围、精度等,然后选择适合的硬件平台来满足要求,一般是选择高速数据采集卡、放大电路、滤波器等硬件组件。 2. 采集数据信号:通过高速数据采集卡将模拟电信号转换成数字信号,实现对信号的采集和存储。 3. 信号处理:对采集到的信号进行去噪、滤波、放大等处理,保证信号的准确性和精度。 4. 显示输出:通过labview软件提供的虚拟仪器组件,将处理后的信号显示在计算机屏幕上,同时还可以将数据保存、打印输出等。 5. 添加双通道功能:增加第二个通道功能,可以同时测量两个信号。具体可以用NI 9201数字输入/输出模块来实现对两个通道的测量,增加多通道数据显示组件达到双通道显示的效果。 6. 添加测量功能:除了基本的交流/直流、单次/重复等基本显示外,还可以增加其他测量附加功能,例如相位差、峰值、频宽等。 总而言之,基于labview的双通道虚拟示波器设计,通过高效的采集、处理、显示等功能,实现了对电信号的快速测量与分析,为电子工程师、教师和学生提供了方便快捷的实验测量工具。

基于labview的虚拟示波器设计

LabVIEW是一个非常流行的虚拟仪器设计平台,可以创建各种各样的仪器,其中包括虚拟示波器。在基于LabVIEW设计虚拟示波器时,需要考虑以下几点: 首先,需要确定所需的输入信号类型。虚拟示波器可以接收模拟或数字信号,或者同时接收两者。该输入信号可以是实时数据,也可以是预录数据。 其次,可以选择适当的控件来显示输入信号。在LabVIEW中,有许多可用于制作示波器的控件,如图形显示器、图表、波形控件等。 除了控件的选择外,还需要定义示波器的显示参数。例如,示波器的采样率、显示时间、垂直和水平标尺等。设计者还可以选择是否添加触发功能,以及触发类型和触发电平等参数。 最后,必须设置数据输入和处理方式。这可以通过LabVIEW函数模块完成。例如,可以使用示波器模块根据设置的参数获取输入信号,进行数据预处理、存储和分析等操作。 总之,基于LabVIEW设计虚拟示波器需要考虑多方面的因素,包括输入信号类型、控件选择、数据显示参数、触发设置和数据处理等。只有全面考虑了这些因素,才能设计出功能完善、操作简便的虚拟示波器。

相关推荐

### 回答1: LabVIEW是一种非常强大和灵活的编程语言和开发环境,用于控制和监测实验室设备和仪器。在LabVIEW中,可以轻松创建各种图形用户界面,其中包括示波器面板。下面是一个关于如何使用LabVIEW创建示波器面板的简单教程。 首先,在LabVIEW中打开一个新的VI(虚拟仪器)项目。VI相当于程序中的一个模块,它包含了图形用户界面和程序代码。 然后,从LabVIEW提供的控件面板上选择合适的控件来构建示波器的界面。比如,可以选择一个波形图控件用于显示波形,一个滑块控件用于调整波频率,一个文本框控件用于显示波峰值等等。将这些控件适当地放置在面板上,形成一个示波器的界面布局。 接下来,添加适当的代码和功能以完成示波器的操作。这包括实时获取数据、处理数据和控制示波器的参数等。可以使用LabVIEW提供的编程结构来实现这些功能,比如循环结构、选择结构和图形化的数据流编程等。 在完成界面和功能设计后,可以运行程序并使用示波器面板进行实时数据的监测和观测。可以通过调整滑块控件来改变波形的频率,通过点击按钮控件来开始/暂停示波器的操作,通过查看波形图控件来获取实时的波形数据等等。 最后,可以对示波器面板进行美化和优化,以提升用户体验和程序性能。可以使用LabVIEW提供的工具和技术来改善界面设计、增加用户交互、优化算法等等。 总之,LabVIEW提供了一个强大且易于使用的工具来创建示波器面板。通过选择合适的控件、添加适当的功能和优化界面设计,可以轻松地实现一个功能完善且易于操作的示波器面板。 ### 回答2: LabVIEW(Laboratory Virtual Instrument Engineering Workbench)是一种基于图形化编程环境的系统设计平台,常用于实验室和工程领域中的仪器控制、数据采集和分析等应用。而示波器是一种广泛应用于电子测量领域的仪器,用于显示电压信号的波形。 使用LabVIEW可以很方便地设计和搭建示波器的界面。首先,我们需要创建一个新的LabVIEW项目,并在主界面中选中示波器面板模板。然后,我们可以通过拖拽和放置各种控件来定制面板布局。一般来说,示波器面板应该包括以下几个主要控件: 1. 波形显示区域:使用LabVIEW的图形控件,可以创建一个用于显示电压波形的区域。可以设置坐标轴、颜色和线型等属性,使波形显示更加清晰和直观。 2. 扫描控制:示波器需要能够根据需要设置扫描速率和时间范围。我们可以使用数字输入框或滑动条等控件来实现这一功能。 3. 触发设置:为了稳定地显示波形,我们需要设置触发条件。可以通过创建下拉列表或单选按钮来选择触发模式,设置触发电平和触发源等参数。 4. 输入通道设置:示波器通常具有多个输入通道,用于同时显示多个波形。可以使用复选框或开关等控件来选择需要显示的通道,并设置通道的电压量程和耦合方式等参数。 5. 其他控件:根据实际需求,我们还可以添加一些其他控件,如水平和垂直标尺、光标测量、保存和加载波形数据等功能。 设计好示波器面板后,我们可以使用LabVIEW的图形编程功能来实现各个控件的响应动作和数据处理。可以编写代码来读取输入信号、触发波形显示、进行数据分析和计算等功能。 总之,通过使用LabVIEW,我们可以方便地创建一个功能完善且易于操作的示波器面板,实现对电压信号波形的监测、显示和分析。这为电子测量和信号处理提供了一个强大的工具和平台。 ### 回答3: LabVIEW是一款强大的可视化编程语言,被广泛应用于实验室测量、控制和数据采集等领域。其中,LabVIEW的示波器面板功能非常实用,可以用于实时显示和分析信号波形。 首先,我们需要创建一个新的VI(虚拟仪器)来开始示波器面板的设计。打开LabVIEW软件,点击新建VI,选择“面板”的选项,即可创建一个新的面板。 接下来,我们需要将示波器面板所需的控件和显示组件添加到面板上。可以通过拖拽和放置的方式在面板上创建控件,如波形图、图标按钮、数值显示等。这些控件可以通过面板右侧的工具栏进行选择和设置。 然后,我们需要配置控件的属性和功能。示波器面板中最常用的是波形图,可以通过右键单击波形图控件,选择“属性”进行设置。可以设置波形显示的样式、坐标轴范围、刷新速率等。另外,还可以添加触发器、标记等功能来更加详细地分析信号波形。 最后,我们需要为示波器面板添加数据源。可以通过连接外部仪器或者生成虚拟信号来提供数据源。一般情况下,我们可以使用LabVIEW提供的函数库来读取外部设备的数据,并实时将数据传输到示波器面板上进行显示和分析。 需要注意的是,示波器面板的设计和功能可以根据具体的需求进行自定义和扩展。LabVIEW提供了丰富的函数库和工具,可以实现更多高级的功能和应用。 以上就是关于LabVIEW做示波器面板教程的基本步骤和内容。通过这些步骤,我们可以轻松地设计和配置一个实用的示波器面板,并进行信号的实时显示和分析。
### 回答1: LabVIEW是一款非常强大的开发软件,可以用于许多领域的应用,包括测量和自动化。在这种情况下,我们可以使用LabVIEW作为开发工具来创建一个简单的示波器。 首先,需要了解的是,示波器通过在一定时间内测量电压波形,并用波形图所描绘出来,来观察信号的变化。因此,在进行LabVIEW中的示波器开发时,我们需要引入模拟输入线(例如:仿真模块,如“模拟输入”等)并将其接入示波器的电路板上。 然后,在LabVIEW中定义好测量参数(例如:采样率和波形长度等)以及显示参数(例如:图形窗口大小和轮廓等),我们就可以开始测量电压波形,然后将其显示在屏幕上。 如果我们需要实时地捕获和显示信号,我们可以使用LabVIEW的图形库与储存库,这将会允许我们动态添加,删除,修改信号轴参数,以适应所选择的波形图视图大小。 此外,我们可以通过使用LabVIEW的数据处理和分析库来分析信号特性,例如:周期,幅度和相位等,以便我们了解所跟踪的信号的行为。 总的来说,使用LabVIEW做简易示波器是非常可行的,因为它拥有丰富的功能和灵活的插槽架设计。这可以满足我们的需求,切实有效的测量和分析电压波形,并使得数据分析变得更加容易。 ### 回答2: 利用LabVIEW软件可以很方便地搭建一个简易示波器。首先,需要有一个用于输入信号的数据采集卡,如DAQ卡或者USB接口的模拟输入模块。 在LabVIEW的开发环境中,我们可以使用图形化编程来搭建示波器的界面。首先,选择相应的用户界面元素,例如按钮、滑动条和图形显示窗口。然后,将这些元素拖拽到程序界面布局中。 接下来,需要编写相应的代码来控制数据采集和图形显示。在LabVIEW中,可以使用各种内置的函数模块,如数据采集模块和图形显示模块。利用这些模块,可以实现数据的采集、存储和显示功能。 首先,需要设置数据采集卡的采样率和采样通道数。然后,在程序中添加数据采集模块,配置好通道和采样率等参数。通过触发按钮,可以开始和停止数据采集。 接下来,需要将采集到的数据传递给图形显示模块进行实时显示。可以使用XY Graph元素来显示波形图,或者使用Waveform Chart元素来显示动态的波形曲线。通过动态更新图形显示的数据,可以实现实时显示效果。 除了基本的数据采集和显示,还可以添加一些附加功能,例如触发功能、自动测量功能等。通过添加相应的控制和处理模块,可以实现这些功能。 最后,进行程序的调试和测试,并调整相应的参数来优化示波器的性能。可以对采样率、显示速度和触发灵敏度等参数进行调整,以满足不同的应用需求。 总结来说,利用LabVIEW软件可以很方便地搭建一个简易示波器,通过图形化编程和内置的函数模块,可以实现数据采集、存储和显示功能。同时,还可以添加附加功能来满足不同的应用需求。 ### 回答3: 用LabVIEW做简易示波器是相对简单的,下面我将简要介绍一下基本的实现步骤和关键点。 首先,我们需要一个模拟输入信号的来源。可以通过外部仪器(如信号发生器)将模拟信号输入计算机的数据采集卡上,或者通过模拟信号生成器VIs来模拟一个输入信号源。 接下来,我们需要通过数据采集卡或者其他方式,以合适的采样率采集模拟信号的数据。利用LabVIEW提供的数据采集模块,可以方便地获取模拟信号的数据值。 获取到信号数据后,我们可以利用LabVIEW的绘图模块,绘制出与时间关联的波形图。通过使用绘图模块中的Waveform Chart和Graph来绘制,我们可以将采集到的模拟信号以波形的形式显示在界面上。 除了波形显示外,为了更好地观察信号,我们还可以在界面上添加一些调节参数的控件。例如可以添加刻度尺、缩放按钮、触发控制等,以便用户可以根据需要对波形进行调整和观察。 最后,为了使示波器更加完善,可以考虑添加一些额外的功能。例如可以实现单通道或多通道的切换显示,添加快捷键控制、自动触发功能等等,以提升示波器的实用性和操作便捷性。 综上,利用LabVIEW来实现简易示波器是相对容易的。只需要注意合理安排各个模块的连接和参数设置,即可实现对模拟信号的采集和显示,以及一些额外功能的增加。
### 回答1: 基于LabVIEW的虚拟频谱分析仪设计是一种利用LabVIEW软件平台实现频谱分析的技术。该技术可以通过采集信号数据并对其进行处理,实现对信号频谱的分析和显示。通过该技术,可以实现对各种信号的频谱分析,包括音频信号、视频信号、无线电信号等。同时,该技术还可以实现对信号的滤波、增益控制等功能,为信号处理提供了便利。 ### 回答2: 虚拟频谱分析仪是一种能够分析信号频谱以及相关参数的仪器,虚拟频谱分析仪可以在计算机上实现,相比实际的频谱分析仪,具有成本低、体积小、易于移植和程序化控制等特点。 LabVIEW是一款非常适合用于虚拟仪器设计的软件,它提供了一系列的数据分析和处理的工具,能够帮助我们设计并实现一个基于LabVIEW的虚拟频谱分析仪。 首先,我们需要采集待分析信号数据。通过LabVIEW内置的函数,我们可以使用数据采集卡、声卡或者其他通用的传感器来采集待分析信号。采集到的数据可以进行一些预处理,如滤波、去噪等操作。 接着,我们需要进行FFT变换,即将时域信号转换为频域信号。在LabVIEW中,我们可以使用FFT VI来实现这个功能。FFT VI可以直接将采集的信号数据作为输入,然后输出频谱图和相应的频谱数据。 为了更直观地分析结果,我们还可以在LabVIEW界面上画出频谱图,同时带有一些工具条,方便用户进行数据分析和图像处理。比如可以提供用户选择不同的窗函数以改善频谱估计过程中的动态范围,以及操作工具条,可以对频率范围进行放大和缩小,或者切换不同的色带来显示不同的频率成分。 最后,我们还可以通过LabVIEW的数据存储工具,将分析结果以图形或者文本方式存储下来,方便用户进行后续的数据分析和处理。 通过上述步骤,我们可以实现一个简单但功能强大的基于LabVIEW的虚拟频谱分析仪,其具有低成本、高效率的特点,为用户提供了一个方便的信号分析和处理工具。 ### 回答3: 虚拟频谱分析仪是现代工程技术和科学领域的一种重要工具,旨在分析和测量信号在不同频率上的分量。这个设备的使用已经被广泛应用于无线通信、音频处理、医学信号处理和生物医学领域等许多领域。 LabVIEW是一个强大的工程软件平台,可用于各种数据采集和信号处理任务的开发。在LabVIEW平台上开发虚拟频谱分析仪具有很多优点,如易于使用、方便快捷,代码可重复使用等等,更重要的是它可以有效地满足不同行业和专业用户的实际需求。 基于LabVIEW的虚拟频谱分析仪设计主要包括以下几个方面: 1.准备和选择仪器和传感器:虚拟频谱分析仪需要接受原始信号,所以需要选择合适的仪器和传感器以及合适的滤波器等。 2.数据采集和准备:使用LabVIEW平台中的数据采集模块,将传感器收集到的原始信号数据存储在计算机的内存中,并对原始数据进行处理,使其符合分析和处理要求。 3.信号分析和处理:使用LabVIEW平台中的信号处理模块将分析所需的信号分量提取出来,如频率、振幅等等。 4.显示和分析:利用LabVIEW平台提供的图形用户界面,将分析后的信号数据可视化,更加直观地进行分析和研究。此外,用户还可以在分析后动态调整参数,以实现更精确的分析和研究。 虚拟频谱分析仪可以极大地帮助用户更好地掌握实际工程问题和研究领域的分析与处理,从而提升其自身的科学研究和工程技术实践能力。
"LabVIEW虚拟仪器程序设计从入门到精通"光盘资源是一种提供学习和掌握LabVIEW虚拟仪器程序设计的电子学习资源。该光盘资源通过视频教程、实例演示和练习项目等形式,帮助用户逐步学习和掌握LabVIEW虚拟仪器程序设计的基础知识和高级技巧。 这个光盘资源的入门部分主要介绍了LabVIEW的基本概念、编程结构、控件和指示器的使用等内容。用户可以通过观看视频教程和实践练习项目,初步了解和掌握LabVIEW的基本操作和程序设计方法。 随着学习的深入,光盘资源还包含了一些高级主题,如图形化编程、面向对象编程、数据采集与控制、虚拟仪器模块的开发等。用户可以通过这些教程和实例演示,学习如何利用LabVIEW进行复杂的数据处理、实时控制以及自定义虚拟仪器的开发。 该光盘资源还提供了大量的实际应用案例,包括信号处理、电路设计、机械控制等领域。用户可以通过这些案例学习如何将LabVIEW应用于实际工程项目中,提高工作效率和解决实际问题的能力。 总之,"LabVIEW虚拟仪器程序设计从入门到精通"光盘资源是一种非常实用的学习工具,对想要学习和掌握LabVIEW虚拟仪器程序设计的人来说,是一份宝贵的学习资料。无论是初学者还是有一定经验的用户,都可以通过这个光盘资源提升自己的技能水平,应用LabVIEW进行各种实际工程项目的开发和应用。

最新推荐

基于LabVIEW的虚拟振动测试分析系统

笔者基于振动测试的这种需要,设计了一套以数据采集卡、信号调理电路和各类高精度的传感器为硬件,基于LabVIEW虚拟仪器软件开发平台的振动测试分析系统。此系统不但节省了硬件成本,而且容易操作,同时大大缩短了整个...

基于声卡和LabVIEW的虚拟仪器设计与实现

为了在对采样频率要求不高的情况下进行信号的生成和分析,采用声卡取代价格昂贵的数据采集卡进行采样和输出,利用虚拟仪器开发软件LabVIEW,分别设计和实现了基于声卡的虚拟信号发生器和虚拟示波器。信号发生器可以...

基于Labview的虚拟示波器设计

基于Labview的虚拟示波器设计 1.技术指标 能实现2个波形的分别输入及比较,可以简单的控制示波器输出的波形,例如可以对波形进行幅度和频率的调制,可以控制波形上下移动以及对波形的峰峰值进行测量。 2.设计方案 ...

基于labview的虚拟示波器设计论文

这是一篇用LabVIEW做的虚拟示波器的论文,很好的介绍了示波器的结构,应用,以及设计方法

LabVIEW串口四通道示波器

利用stm32采集四通道数据,利用串口发送到PC端,LabVIEW进行数据处理,并进行波形显示

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

语义Web动态搜索引擎:解决语义Web端点和数据集更新困境

跟踪:PROFILES数据搜索:在网络上分析和搜索数据WWW 2018,2018年4月23日至27日,法国里昂1497语义Web检索与分析引擎Semih Yumusak†KTO Karatay大学,土耳其semih. karatay.edu.trAI 4 BDGmbH,瑞士s. ai4bd.comHalifeKodazSelcukUniversity科尼亚,土耳其hkodaz@selcuk.edu.tr安德烈亚斯·卡米拉里斯荷兰特文特大学utwente.nl计算机科学系a.kamilaris@www.example.com埃利夫·尤萨尔KTO KaratayUniversity科尼亚,土耳其elif. ogrenci.karatay.edu.tr土耳其安卡拉edogdu@cankaya.edu.tr埃尔多安·多杜·坎卡亚大学里扎·埃姆雷·阿拉斯KTO KaratayUniversity科尼亚,土耳其riza.emre.aras@ogrenci.karatay.edu.tr摘要语义Web促进了Web上的通用数据格式和交换协议,以实现系统和机器之间更好的互操作性。 虽然语义Web技术被用来语义注释数据和资源,更容易重用,这些数据源的特设发现仍然是一个悬 而 未 决 的 问 题 。 流 行 的 语 义 Web �

centos7安装nedit

### 回答1: 你可以按照以下步骤在 CentOS 7 上安装 nedit: 1. 打开终端并切换到 root 用户。 2. 运行以下命令安装 EPEL 存储库: ``` yum install epel-release ``` 3. 运行以下命令安装 nedit: ``` yum install nedit ``` 4. 安装完成后,你可以在终端中运行以下命令启动 nedit: ``` nedit ``` 如果你想打开一个文件,可以使用以下命令: ``` nedit /path/to/file

TFT屏幕-ILI9486数据手册带命令标签版.pdf

ILI9486手册 官方手册 ILI9486 is a 262,144-color single-chip SoC driver for a-Si TFT liquid crystal display with resolution of 320RGBx480 dots, comprising a 960-channel source driver, a 480-channel gate driver, 345,600bytes GRAM for graphic data of 320RGBx480 dots, and power supply circuit. The ILI9486 supports parallel CPU 8-/9-/16-/18-bit data bus interface and 3-/4-line serial peripheral interfaces (SPI). The ILI9486 is also compliant with RGB (16-/18-bit) data bus for video image display. For high speed serial interface, the ILI9486 also provides one data and clock lane and supports up to 500Mbps on MIPI DSI link. And also support MDDI interface.

数据搜索和分析

跟踪:PROFILES数据搜索:在网络上分析和搜索数据WWW 2018,2018年4月23日至27日,法国里昂1485表征数据集搜索查询艾米莉亚·卡普尔扎克英国南安普敦大学开放数据研究所emilia. theodi.org珍妮·坦尼森英国伦敦开放数据研究所jeni@theodi.org摘要在Web上生成和发布的数据量正在迅速增加,但在Web上搜索结构化数据仍然存在挑战。在本文中,我们探索数据集搜索分析查询专门为这项工作产生的通过众包-ING实验,并比较它们的搜索日志分析查询的数据门户网站。搜索环境的变化以及我们给人们的任务改变了生成的查询。 我们发现,在我们的实验中发出的查询比数据门户上的数据集的搜索查询要长得多。 它们还包含了七倍以上的地理空间和时间信息的提及,并且更有可能被结构化为问题。这些见解可用于根据数据集搜索的特定信息需求和特征关键词数据集搜索,�