卷积神经网络中加入5折交叉验证matlab代码
时间: 2023-10-22 15:13:53 浏览: 112
基于K 折交叉验证的CNN深度学习分类算法附matlab代码
下面是一个简单的 MATLAB 代码示例,用于在卷积神经网络中使用 5 折交叉验证:
```
% Load data
load('data.mat')
% Set up cross-validation
k = 5;
cv = cvpartition(size(data, 4), 'KFold', k);
% Train and test the network for each fold
for i = 1:k
% Split data into training and testing sets
trainIdx = cv.training(i);
testIdx = cv.test(i);
trainData = data(:, :, :, trainIdx);
testData = data(:, :, :, testIdx);
trainLabels = labels(trainIdx);
testLabels = labels(testIdx);
% Create and train the network
net = alexnet;
[net, ~] = trainNetwork(trainData, trainLabels, layers);
% Test the network
predLabels = classify(net, testData);
accuracy(i) = mean(predLabels == testLabels);
end
% Calculate overall accuracy
meanAccuracy = mean(accuracy);
```
在这个示例中,我们假设数据和标签存储在名为“data.mat”的 MATLAB 文件中。我们使用“cvpartition”函数生成 5 折交叉验证分区,然后在每个分区上训练和测试一个卷积神经网络。最后,我们计算每个分区的准确性,并计算平均准确性作为模型的性能指标。
阅读全文