labels = (train_images.class_indices) labels = dict((v,k) for k,v in labels.items()) pred = [labels[k] for k in pred]
时间: 2023-06-17 11:02:47 浏览: 172
这段代码是将模型预测的结果从数字标签转换为对应的类别标签。train_images.class_indices 是一个字典,将类别名称映射到对应的数字标签。第一行代码将类别名称和对应的数字标签反转,生成一个新的字典 labels。第二行代码使用列表推导式将模型预测的结果从数字标签转换为对应的类别标签,具体来说,对于每个数字标签 k,使用 labels[k] 获取对应的类别标签,将其添加到 pred 列表中。最终,pred 列表中存储的是模型预测的类别标签。
相关问题
from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.utils import to_categorical import numpy as np MAX_SEQUENCE_LEN = 1000 # 文档限制长度 MAX_WORDS_NUM = 20000 # 词典的个数 VAL_SPLIT_RATIO = 0.2 # 验证集的比例 tokenizer = Tokenizer(num_words=MAX_WORDS_NUM) tokenizer.fit_on_texts(texts) sequences = tokenizer.texts_to_sequences(texts) word_index = tokenizer.word_index print(len(word_index)) # all token found # print(word_index.get('新闻')) # get word index dict_swaped = lambda _dict: {val:key for (key, val) in _dict.items()} word_dict = dict_swaped(word_index) # swap key-value data = pad_sequences(sequences, maxlen=MAX_SEQUENCE_LEN) labels_categorical = to_categorical(np.asarray(labels)) print('Shape of data tensor:', data.shape) print('Shape of label tensor:', labels_categorical.shape) indices = np.arange(data.shape[0]) np.random.shuffle(indices) data = data[indices] labels_categorical = labels_categorical[indices] # split data by ratio val_samples_num = int(VAL_SPLIT_RATIO * data.shape[0]) x_train = data[:-val_samples_num] y_train = labels_categorical[:-val_samples_num] x_val = data[-val_samples_num:] y_val = labels_categorical[-val_samples_num:]
这段代码使用了Keras库中的Tokenizer和pad_sequences方法对文本进行预处理,将文本转化为数字序列,并进行了填充,确保所有文本序列的长度相同。同时也使用了to_categorical方法对标签进行独热编码。最后,将数据集按照VAL_SPLIT_RATIO的比例划分为训练集和验证集。
import numpy as np import pandas as pd import matplotlib as plt from model import MLP import torch.optim as optim import torch import torch.nn as nn import argparse parser = argparse.ArgumentParser() parser.add_argument('--batchSize', type=int, default=4, help='input batch size') parser.add_argument('--nEpochs', type=int, default=100, help='number of epochs to train for') parser.add_argument('--LR', type=float, default=0.001, help='learning rate for net') opt = parser.parse_args() # 数据集预处理 df = pd.read_csv("C:/Users/shen/Desktop/housing.csv", delim_whitespace=True) # Turn into Numpy arrays arr = df.to_numpy(dtype='float') # Split the features and the labels X = arr[:, :-1] y = np.expand_dims(arr[:, -1], 1) ones = np.ones((X.shape[0], 1)) X_new = np.hstack((ones, X)) # Split the dataset into train set and test set indices = np.random.permutation(X_new.shape[0]) train_indices, test_indices = indices[:int(0.9*X_new.shape[0])], indices[int(0.9*X_new.shape[0]):] X_train, X_test = X_new[train_indices, :], X_new[test_indices, :] y_train, y_test = y[train_indices, :], y[test_indices, :] model = MLP() device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model.to(device) model.train() optim_model = optim.Adam(model.parameters(), lr=opt.LR)#Adam优化器 # for epoch in range(opt.nEpochs): # # START CODE HERE # # END CODE HERE # torch.save(model.state_dict(),"C:/Users/shen/Desktop/checkpoint/net_weight.pth")帮我解释这里面每行代码的意思
这段代码主要是在导入一些Python的库(如numpy,pandas,matplotlib等),以及导入一个叫做MLP的模型。同时还使用了一些PyTorch的库(如optim,nn等)。接下来使用argparse库创建了一个命令行参数解析器,可以通过命令行来指定一些参数(比如batchSize,nEpochs和LR)。最后通过parse_args()函数解析这些参数。
阅读全文