matlab pointnet进行点云分类具体过程及代码
时间: 2023-08-06 15:03:01 浏览: 296
MATLAB PointNet是一个用于点云分类的深度学习网络。其具体过程包括:
1.数据预处理:将点云数据转换为张量表示,并进行归一化处理。
2.网络架构:PointNet网络由两个主要组件组成,一个全连接网络和一个变换网络。变换网络用于学习点云的局部特征,全连接网络用于分类。
3.训练:使用训练数据对网络进行训练,通过反向传播算法更新网络参数,直到损失函数收敛。
4.测试:使用测试数据对训练好的网络进行测试,评估其分类准确率。
下面是一份MATLAB PointNet点云分类的示例代码,仅供参考:
```matlab
% 加载数据
load('modelnet10_batch_1.mat');
% 数据预处理
trainPoints = trainData(:, :, :, 1:800);
trainLabels = trainLabels(1:800);
testPoints = trainData(:, :, :, 801:end);
testLabels = trainLabels(801:end);
trainPoints = permute(trainPoints, [2 1 3]);
trainPoints = reshape(trainPoints, [size(trainPoints, 1) size(trainPoints, 2) * size(trainPoints, 3)]);
testPoints = permute(testPoints, [2 1 3]);
testPoints = reshape(testPoints, [size(testPoints, 1) size(testPoints, 2) * size(testPoints, 3)]);
trainPoints = trainPoints';
testPoints = testPoints';
% 构建网络
numPoints = size(trainPoints, 2);
inputSize = size(trainPoints, 1);
outputSize = numel(unique(trainLabels));
inputLayer = imageInputLayer([1 1 inputSize], 'Normalization', 'none');
transformLayer = pointwiseSpatialTransformLayer('STN');
convLayer1 = convolution2dLayer([1 64], 64, 'Padding', [0 0], 'Name', 'conv1');
bnLayer1 = batchNormalizationLayer('Name', 'bn1');
reluLayer1 = reluLayer('Name', 'relu1');
maxpoolLayer1 = maxPooling2dLayer([numPoints 1], 'Name', 'maxpool1');
convLayer2 = convolution2dLayer([1 1], 128, 'Padding', [0 0], 'Name', 'conv2');
bnLayer2 = batchNormalizationLayer('Name', 'bn2');
reluLayer2 = reluLayer('Name', 'relu2');
convLayer3 = convolution2dLayer([1 1], 1024, 'Padding', [0 0], 'Name', 'conv3');
bnLayer3 = batchNormalizationLayer('Name', 'bn3');
reluLayer3 = reluLayer('Name', 'relu3');
maxpoolLayer2 = maxPooling2dLayer([numPoints 1], 'Name', 'maxpool2');
fcLayer1 = fullyConnectedLayer(512, 'Name', 'fc1');
bnLayer4 = batchNormalizationLayer('Name', 'bn4');
reluLayer4 = reluLayer('Name', 'relu4');
fcLayer2 = fullyConnectedLayer(256, 'Name', 'fc2');
bnLayer5 = batchNormalizationLayer('Name', 'bn5');
reluLayer5 = reluLayer('Name', 'relu5');
fcLayer3 = fullyConnectedLayer(outputSize, 'Name', 'fc3');
softmaxLayer = softmaxLayer('Name', 'softmax');
classificationLayer = classificationLayer('Name', 'classification');
layers = [
inputLayer
transformLayer
convLayer1
bnLayer1
reluLayer1
maxpoolLayer1
convLayer2
bnLayer2
reluLayer2
convLayer3
bnLayer3
reluLayer3
maxpoolLayer2
fcLayer1
bnLayer4
reluLayer4
fcLayer2
bnLayer5
reluLayer5
fcLayer3
softmaxLayer
classificationLayer
];
% 训练网络
options = trainingOptions('adam', ...
'ExecutionEnvironment', 'auto', ...
'MaxEpochs', 20, ...
'MiniBatchSize', 32, ...
'Shuffle', 'every-epoch', ...
'Verbose', true, ...
'Plots', 'training-progress');
net = trainNetwork(trainPoints, categorical(trainLabels), layers, options);
% 测试网络
YPred = classify(net, testPoints);
accuracy = sum(YPred == categorical(testLabels))/numel(testLabels);
```
这份代码实现了一个简单的PointNet网络,可以对ModelNet10数据集进行分类。其中,pointwiseSpatialTransformLayer用于学习点云的局部特征,convolution2dLayer用于特征提取,batchNormalizationLayer用于加速收敛。在训练时使用了adam优化器,最大训练轮数为20,批大小为32。在测试时,使用分类网络对测试数据进行分类并计算准确率。
阅读全文