yolov7的fps是多少
时间: 2025-01-03 21:18:18 浏览: 13
### YOLOv7 模型 FPS 性能测试
对于YOLOv7模型的帧率(FPS)性能测试,通常通过特定环境下执行推理操作来完成。为了获得准确的结果,在固定硬件配置下运行测试程序是必要的。在实际应用中,可以通过加载预训练权重并利用Python脚本调用检测函数来进行FPS测量。
下面是一个简单的代码片段用于计算YOLOv7模型的平均处理速度:
```python
import time
from models.experimental import attempt_load
from utils.general import non_max_suppression, scale_coords
from utils.datasets import letterbox
import torch
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = attempt_load('yolov7.pt', map_location=device)
def test_fps(image_path):
img_size = 640
conf_thres = 0.25
iou_thres = 0.45
# Load image and preprocess it.
img0 = cv2.imread(image_path)
img = letterbox(img0, new_shape=img_size)[0]
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
img = np.ascontiguousarray(img)
img = torch.from_numpy(img).to(device)
img = img.float()
img /= 255.0 # Normalize to [0, 1]
if img.ndimension() == 3:
img = img.unsqueeze(0)
times = []
for _ in range(100): # Run inference multiple times to get average FPS
t1 = time.time()
pred = model(img, augment=False)[0]
pred = non_max_suppression(pred, conf_thres, iou_thres)
t2 = time.time()
times.append(t2 - t1)
avg_time = sum(times)/len(times)
fps = 1 / avg_time
print(f"Average FPS over 100 iterations: {fps:.2f}")
test_fps('path_to_image')
```
此段代码展示了如何设置YOLOv7模型并对单张图片进行多次推断以获取稳定的FPS数值[^2]。需要注意的是,最终得到的具体FPS数据会受到多种因素的影响,比如GPU型号、输入图像尺寸以及批处理大小等。
阅读全文