上左后右后的图像用python进行三维重建
时间: 2023-07-19 14:28:51 浏览: 192
图像的三维重建
要用Python进行三维重建,你需要安装一些库和软件,包括:
- OpenCV:用于图像处理、特征提取和匹配等;
- NumPy:用于数值计算和矩阵操作;
- Matplotlib:用于可视化结果;
- Open3D:用于点云处理和三维重建。
如果你已经安装好这些库,可以按照以下步骤进行三维重建:
1. 读取图像并提取特征点
```python
import cv2
import numpy as np
# 读取图像
img_left = cv2.imread('left.jpg')
img_right = cv2.imread('right.jpg')
# 提取特征点
orb = cv2.ORB_create()
kp1, des1 = orb.detectAndCompute(img_left, None)
kp2, des2 = orb.detectAndCompute(img_right, None)
```
2. 匹配特征点并计算基础矩阵
```python
# 匹配特征点
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
matches = bf.match(des1, des2)
# 选择最佳匹配点
matches = sorted(matches, key=lambda x: x.distance)
good_matches = matches[:100]
# 计算基础矩阵
pts1 = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2)
pts2 = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2)
F, mask = cv2.findFundamentalMat(pts1, pts2, cv2.FM_LMEDS)
```
3. 计算本质矩阵和相机矩阵
```python
# 计算本质矩阵
K = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]])
E = np.dot(np.dot(K.T, F), K)
# 计算相机矩阵
_, R, t, mask = cv2.recoverPose(E, pts1, pts2, K)
```
4. 三维重建
```python
import open3d as o3d
# 读取图像并提取特征点
img_left = cv2.imread('left.jpg')
img_right = cv2.imread('right.jpg')
orb = cv2.ORB_create()
kp1, des1 = orb.detectAndCompute(img_left, None)
kp2, des2 = orb.detectAndCompute(img_right, None)
# 匹配特征点
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
matches = bf.match(des1, des2)
matches = sorted(matches, key=lambda x: x.distance)
good_matches = matches[:100]
# 计算基础矩阵
pts1 = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2)
pts2 = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2)
F, mask = cv2.findFundamentalMat(pts1, pts2, cv2.FM_LMEDS)
# 计算本质矩阵和相机矩阵
fx, fy, cx, cy = 718.856, 718.856, 607.1928, 185.2157 # 相机内参
K = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]])
E = np.dot(np.dot(K.T, F), K)
_, R, t, mask = cv2.recoverPose(E, pts1, pts2, K)
# 三维重建
points1 = cv2.triangulatePoints(np.eye(3), np.zeros((3, 1)), R, t, pts1, pts2)
points1 = points1 / points1[3]
points1 = points1[:3].T
# 可视化结果
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(points1)
o3d.visualization.draw_geometries([pcd])
```
上述代码中,我们使用OpenCV进行特征点匹配和计算基础矩阵、本质矩阵和相机矩阵,然后使用Open3D进行三维重建和可视化。注意,这里需要根据你的相机内参修改代码中的fx、fy、cx和cy等参数。
阅读全文