多视角的三张图用python进行三维重建
时间: 2023-07-24 15:28:18 浏览: 174
三张雅致中国风PPT背景图片
三维重建是一种通过多张图像或多个视角来还原三维物体的技术。在Python中,有许多库可以用来进行三维重建,如OpenCV、Matplotlib、NumPy、Mayavi等。这里提供一种基于OpenCV和NumPy的简单实现方法,步骤如下:
1. 读取多张图像
```python
import cv2
import numpy as np
img1 = cv2.imread('img1.jpg')
img2 = cv2.imread('img2.jpg')
img3 = cv2.imread('img3.jpg')
```
2. 提取特征点
利用SIFT算法或SURF算法提取图像中的特征点,这里使用SIFT算法:
```python
sift = cv2.xfeatures2d.SIFT_create()
kp1, des1 = sift.detectAndCompute(img1, None)
kp2, des2 = sift.detectAndCompute(img2, None)
kp3, des3 = sift.detectAndCompute(img3, None)
```
3. 匹配特征点
利用FLANN算法进行特征点匹配:
```python
FLANN_INDEX_KDTREE = 1
flann_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
matcher = cv2.FlannBasedMatcher(flann_params, {})
matches12 = matcher.knnMatch(des1, des2, 2)
matches23 = matcher.knnMatch(des2, des3, 2)
```
4. 计算相机位姿
利用三张图像中的特征点,采用PnP算法计算相机的位姿:
```python
MIN_MATCH_COUNT = 10
good12 = []
for m, n in matches12:
if m.distance < 0.7 * n.distance:
good12.append(m)
if len(good12) > MIN_MATCH_COUNT:
src_pts = np.float32([kp1[m.queryIdx].pt for m in good12]).reshape(-1, 1, 2)
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good12]).reshape(-1, 1, 2)
K = np.array([[1000, 0, img1.shape[1] / 2], [0, 1000, img1.shape[0] / 2], [0, 0, 1]])
_, rvec12, tvec12, inliers = cv2.solvePnPRansac(dst_pts, src_pts, K, np.zeros((4, 1)))
else:
print("Not enough matches are found - {}/{}".format(len(good12), MIN_MATCH_COUNT))
good23 = []
for m, n in matches23:
if m.distance < 0.7 * n.distance:
good23.append(m)
if len(good23) > MIN_MATCH_COUNT:
src_pts = np.float32([kp2[m.queryIdx].pt for m in good23]).reshape(-1, 1, 2)
dst_pts = np.float32([kp3[m.trainIdx].pt for m in good23]).reshape(-1, 1, 2)
K = np.array([[1000, 0, img2.shape[1] / 2], [0, 1000, img2.shape[0] / 2], [0, 0, 1]])
_, rvec23, tvec23, inliers = cv2.solvePnPRansac(dst_pts, src_pts, K, np.zeros((4, 1)))
else:
print("Not enough matches are found - {}/{}".format(len(good23), MIN_MATCH_COUNT))
```
5. 三维重建
根据相机位姿,利用三角测量的方法进行三维重建:
```python
def triangulate_points(pose1, pose2, pts1, pts2):
pose1 = pose1.reshape((3, 4))
pose2 = pose2.reshape((3, 4))
proj1 = np.dot(K, pose1)
proj2 = np.dot(K, pose2)
pts4d = cv2.triangulatePoints(proj1, proj2, pts1.T, pts2.T)
pts3d = cv2.convertPointsFromHomogeneous(pts4d.T)
return pts3d[:, :, 0]
pts1 = np.float32([kp1[m.queryIdx].pt for m in good12]).reshape(-1, 1, 2)
pts2 = np.float32([kp2[m.trainIdx].pt for m in good12]).reshape(-1, 1, 2)
pts3 = np.float32([kp2[m.queryIdx].pt for m in good23]).reshape(-1, 1, 2)
pts4 = np.float32([kp3[m.trainIdx].pt for m in good23]).reshape(-1, 1, 2)
pts12 = triangulate_points(rvec12, rvec23, pts1, pts2)
pts23 = triangulate_points(rvec23, rvec12, pts4, pts3)
```
6. 可视化
将三维重建的结果可视化:
```python
from mayavi import mlab
mlab.figure(bgcolor=(1, 1, 1))
mlab.points3d(pts12[:, 0], pts12[:, 1], pts12[:, 2], color=(1, 0, 0), mode='point')
mlab.points3d(pts23[:, 0], pts23[:, 1], pts23[:, 2], color=(0, 1, 0), mode='point')
mlab.show()
```
以上就是基于OpenCV和NumPy的三维重建方法,需要注意的是,这里只提供了基本的思路和代码,具体实现还需要根据具体的需求进行调整和优化。
阅读全文