plot(Census.Data$Unemployed, Census.Data$Qualification, xlab="% Unemployed", ylab="% With a Qualification") + abline (model_1)
时间: 2024-03-07 12:52:17 浏览: 87
这段代码用于绘制散点图和拟合线,其中`Census.Data$Unemployed`和`Census.Data$Qualification`分别是自变量和因变量的数据。`plot()`函数用于绘制散点图,`xlab`和`ylab`参数分别指定x轴和y轴的标签。`abline()`函数用于添加拟合线,`model_1`表示使用`lm()`函数拟合的线性回归模型。拟合线可以帮助我们更直观地了解自变量和因变量之间的关系,例如,我们可以通过观察拟合线的斜率和截距来判断失业率和教育程度之间的相关性。如果拟合线的斜率为正,表示失业率和教育程度正相关,即失业率越高,教育程度也越高;如果拟合线的斜率为负,表示失业率和教育程度负相关,即失业率越高,教育程度越低。
相关问题
请对以下R代码进行优化,画图使用ggplot2:set.seed(123) data <- matrix(rnorm(50*30), nrow = 50, ncol = 30) library(glmnet) x <- data[,1:29] y <- data[,30] fit1 <- cv.glmnet(x, y, alpha = 1, nfolds = 10) fit2 <- cv.glmnet(x, y+rnorm(50), alpha = 1, nfolds = 10) fit3 <- cv.glmnet(x, y+rnorm(50,mean=2), alpha = 1, nfolds = 10) cv1 <- min(fit1$cvm) cv2 <- min(fit2$cvm) cv3 <- min(fit3$cvm) par(mfrow=c(3,2)) plot(fit1$lambda, fit1$cvm, type="l", xlab="lambda", ylab="CV error", main="Model 1") abline(v=fit1$lambda.min, col="red") plot(fit1$lambda, fit1$glmnet.fit$dev.ratio, type="l", xlab="lambda", ylab="Prediction error", main="Model 1") abline(v=fit1$lambda.min, col="red") plot(fit2$lambda, fit2$cvm, type="l", xlab="lambda", ylab="CV error", main="Model 2") abline(v=fit2$lambda.min, col="red") plot(fit2$lambda, fit2$glmnet.fit$dev.ratio, type="l", xlab="lambda", ylab="Prediction error", main="Model 2") abline(v=fit2$lambda.min, col="red") plot(fit3$lambda, fit3$cvm, type="l", xlab="lambda", ylab="CV error", main="Model 3") abline(v=fit3$lambda.min, col="red") plot(fit3$lambda, fit3$glmnet.fit$dev.ratio, type="l", xlab="lambda", ylab="Prediction error", main="Model 3") abline(v=fit3$lambda.min, col="red") cat("CV of Model 1: ", cv1, "\n") cat("CV of Model 2: ", cv2, "\n") cat("CV of Model 3: ", cv3, "\n")
可以使用 ggplot2 包来画图,同时可以使用 apply() 函数来避免重复的代码。以下是优化后的代码:
```R
set.seed(123)
data <- matrix(rnorm(50*30), nrow = 50, ncol = 30)
library(glmnet)
x <- data[,1:29]
y <- data[,30]
fit1 <- cv.glmnet(x, y, alpha = 1, nfolds = 10)
fit2 <- cv.glmnet(x, y+rnorm(50), alpha = 1, nfolds = 10)
fit3 <- cv.glmnet(x, y+rnorm(50,mean=2), alpha = 1, nfolds = 10)
cv1 <- min(fit1$cvm)
cv2 <- min(fit2$cvm)
cv3 <- min(fit3$cvm)
library(ggplot2)
# define a function to plot CV and Prediction errors
plot_errors <- function(fit, model){
p1 <- ggplot() +
geom_line(aes(x = fit$lambda, y = fit$cvm), color = "blue") +
geom_vline(xintercept = fit$lambda.min, color = "red") +
xlab("lambda") +
ylab("CV error") +
ggtitle(paste0("Model ", model))
p2 <- ggplot() +
geom_line(aes(x = fit$lambda, y = fit$glmnet.fit$dev.ratio), color = "blue") +
geom_vline(xintercept = fit$lambda.min, color = "red") +
xlab("lambda") +
ylab("Prediction error") +
ggtitle(paste0("Model ", model))
plot_grid(p1, p2, ncol = 2)
}
# plot the errors for each model
plot_list <- lapply(list(fit1, fit2, fit3), function(fit) plot_errors(fit, which(list(fit1, fit2, fit3) == fit)))
# print the CV errors
cat("CV of Model 1: ", cv1, "\n")
cat("CV of Model 2: ", cv2, "\n")
cat("CV of Model 3: ", cv3, "\n")
# arrange and print the plots
plot_grid(plotlist = plot_list, ncol = 2)
```
这段代码首先定义了一个 `plot_errors()` 函数,用于绘制 CV error 和 Prediction error 的图形。然后,使用 `lapply()` 函数和一个列表,循环调用该函数来绘制每个模型的图形。最后,使用 `plot_grid()` 函数将所有的图形整合在一起。
在运行以下R代码时:library(glmnet) library(ggplot2) # 生成5030的随机数据和30个变量 set.seed(1111) n <- 50 p <- 30 X <- matrix(runif(n * p), n, p) y <- rnorm(n) # 生成三组不同系数的线性模型 beta1 <- c(rep(1, 3), rep(0, p - 3)) beta2 <- c(rep(0, 10), rep(1, 3), rep(0, p - 13)) beta3 <- c(rep(0, 20), rep(1, 3), rep(0, p - 23)) y1 <- X %% beta1 + rnorm(n) y2 <- X %% beta2 + rnorm(n) y3 <- X %% beta3 + rnorm(n) # 设置交叉验证折数 k <- 10 # 设置不同的lambda值 lambda_seq <- 10^seq(10, -2, length.out = 100) # 执行交叉验证和岭回归,并记录CV error和Prediction error cv_error <- list() pred_error <- list() for (i in 1:3) { # 交叉验证 cvfit <- cv.glmnet(X, switch(i, y1, y2, y3), alpha = 0, lambda = lambda_seq, nfolds = k) cv_error[[i]] <- cvfit$cvm # 岭回归 fit <- glmnet(X, switch(i, y1, y2, y3), alpha = 0, lambda = lambda_seq) pred_error[[i]] <- apply(X, 2, function(x) { x_mat <- matrix(x, nrow = n, ncol = p, byrow = TRUE) pred <- predict(fit, newx = x_mat) pred <- t(pred) mean((x_mat %% fit$beta - switch(i, y1, y2, y3))^2) }) } # 绘制图形 par(mfrow = c(3, 2), mar = c(4, 4, 2, 1), oma = c(0, 0, 2, 0)) for (i in 1:3) { # CV error plot cv_plot_data <- cv_error[[i]] plot(log10(lambda_seq), cv_plot_data, type = "l", xlab = expression(log10), ylab = "CV error", main = paste0("Model ", i)) abline(v = log10(cvfit$lambda.min), col = "red") # Prediction error plot pred_plot_data <- pred_error[[i]] plot(log10(lambda_seq), pred_plot_data, type = "l", xlab = expression(log10), ylab = "Prediction error", main = paste0("Model ", i)) abline(v = log10(lambda_seq[which.min(pred_plot_data)]), col = "red") }。发生了以下问题:Error in xy.coords(x, y, xlabel, ylabel, log) : 'x'和'y'的长度不一样。请对原代码进行修正
在绘图时,应该把lambda_seq的长度改为fit$df,因为fit$df是岭回归模型中的自由度数目,它与lambda_seq的长度是相等的。下面是修改后的代码:
```R
par(mfrow = c(3, 2), mar = c(4, 4, 2, 1), oma = c(0, 0, 2, 0))
for (i in 1:3) {
# CV error plot
cv_plot_data <- cv_error[[i]]
plot(log10(lambda_seq), cv_plot_data, type = "l", xlab = expression(log10), ylab = "CV error", main = paste0("Model ", i))
abline(v = log10(cvfit$lambda.min), col = "red")
# Prediction error plot
pred_plot_data <- pred_error[[i]]
plot(log10(lambda_seq[1:fit$df]), pred_plot_data[1:fit$df], type = "l", xlab = expression(log10), ylab = "Prediction error", main = paste0("Model ", i))
abline(v = log10(lambda_seq[which.min(pred_plot_data)]), col = "red")
}
```
这样就可以解决该问题了。
阅读全文