GAM regression using ggplot2
时间: 2023-09-04 11:16:39 浏览: 121
To perform a Generalized Additive Model (GAM) regression using ggplot2, you can use the `gam()` function from the `mgcv` package and the `ggplot()` function from the `ggplot2` package.
Here is an example using the `mtcars` dataset:
```r
library(mgcv)
library(ggplot2)
# Fit a GAM model
model <- gam(mpg ~ s(wt) + s(hp), data = mtcars)
# Create a data frame with the predicted values
newdata <- data.frame(wt = seq(min(mtcars$wt), max(mtcars$wt), length.out = 100),
hp = seq(min(mtcars$hp), max(mtcars$hp), length.out = 100))
newdata$mpg <- predict(model, newdata)
# Plot the predicted values
ggplot(newdata, aes(x = wt, y = mpg)) +
geom_line() +
labs(x = "Weight", y = "Miles per gallon") +
theme_classic()
```
In this example, we fit a GAM model with `mpg` as the response variable and `wt` and `hp` as the predictors. We then create a data frame with 100 values for `wt` and `hp`, and use the `predict()` function to obtain the predicted values of `mpg`. Finally, we use `ggplot()` to create a line plot of the predicted values. We add labels to the x and y axes using `labs()` and use `theme_classic()` to change the theme of the plot.
阅读全文
相关推荐


















