matlab用金字塔分解进行多尺度分解实现图像融合的代码
时间: 2023-10-11 18:06:45 浏览: 109
以下是使用拉普拉斯金字塔实现图像融合的MATLAB代码:
```matlab
% 读入需要融合的图像
img1 = imread('image1.jpg');
img2 = imread('image2.jpg');
% 将图像转化为灰度图像
gray1 = rgb2gray(img1);
gray2 = rgb2gray(img2);
% 拉普拉斯金字塔分解
levels = 5; % 金字塔的层数
filterSize = 5; % 滤波器大小
gray1Pyr = laplacianPyramid(gray1, levels, filterSize);
gray2Pyr = laplacianPyramid(gray2, levels, filterSize);
% 图像融合
mergedPyr = cell(1, levels+1);
for i = 1:levels+1
rows = size(gray1Pyr{i}, 1);
cols = size(gray1Pyr{i}, 2);
mergedPyr{i} = zeros(rows, cols);
for r = 1:rows
for c = 1:cols
if abs(gray1Pyr{i}(r,c)) > abs(gray2Pyr{i}(r,c))
mergedPyr{i}(r,c) = gray1Pyr{i}(r,c);
else
mergedPyr{i}(r,c) = gray2Pyr{i}(r,c);
end
end
end
end
% 重建金字塔
mergedImg = reconstructLaplacianPyramid(mergedPyr, filterSize);
% 显示并保存融合图像
imshow(mergedImg);
imwrite(mergedImg, 'mergedImage.jpg');
% 拉普拉斯金字塔分解函数
function pyr = laplacianPyramid(img, levels, filterSize)
pyr = cell(1, levels+1);
pyr{1} = img;
for i = 2:levels+1
img = imfilter(img, fspecial('gaussian', filterSize, 0.5), 'symmetric', 'conv');
img = img(1:2:end, 1:2:end);
pyr{i} = imresize(imfilter(img, fspecial('gaussian', filterSize, 0.5), 'symmetric', 'conv'), size(pyr{i-1}), 'bilinear');
pyr{i-1} = pyr{i-1} - pyr{i};
end
end
% 重建拉普拉斯金字塔函数
function img = reconstructLaplacianPyramid(pyr, filterSize)
levels = length(pyr) - 1;
img = pyr{levels+1};
for i = levels:-1:1
img = imresize(img, size(pyr{i}), 'bilinear');
img = img + pyr{i};
end
end
```
这段代码中,首先读入需要融合的两张图像,将其转化为灰度图像。然后使用laplacianPyramid函数对两张灰度图像进行拉普拉斯金字塔分解,得到两个金字塔。接着对不同分辨率的图像进行融合,得到最终的融合金字塔。最后使用reconstructLaplacianPyramid函数重建金字塔,得到最终的融合图像,并将其保存到本地。
阅读全文