写一个用opencv车牌识别python项目
时间: 2024-03-13 16:19:35 浏览: 167
python毕业设计基于Opencv的车牌识别系统源码+全部数据(高分项目).zip
5星 · 资源好评率100%
好的,下面是一个简单的基于OpenCV和Python的车牌识别项目:
1. 安装必要的库
```
pip install opencv-python numpy imutils pytesseract
```
2. 导入库
```python
import cv2
import numpy as np
import imutils
import pytesseract
```
3. 加载图像并进行预处理
```python
# 加载图像并进行预处理
image = cv2.imread("car.jpg")
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
gray = cv2.bilateralFilter(gray, 11, 17, 17)
edged = cv2.Canny(gray, 30, 200)
```
4. 查找轮廓并筛选出可能的车牌区域
```python
# 查找轮廓并筛选出可能的车牌区域
cnts = cv2.findContours(edged.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:10]
screenCnt = None
for c in cnts:
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.018 * peri, True)
if len(approx) == 4:
screenCnt = approx
break
```
5. 从图像中提取车牌区域
```python
# 从图像中提取车牌区域
mask = np.zeros(gray.shape, dtype=np.uint8)
cv2.drawContours(mask, [screenCnt], -1, 255, -1)
mask = cv2.bitwise_and(gray, gray, mask=mask)
```
6. 对车牌图像进行二值化和膨胀
```python
# 对车牌图像进行二值化和膨胀
thresh = cv2.threshold(mask, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
thresh = cv2.dilate(thresh, kernel, iterations=1)
```
7. 提取车牌号码并进行识别
```python
# 提取车牌号码并进行识别
text = pytesseract.image_to_string(thresh, config='--psm 11')
print("Detected License Plate Number:", text.strip())
```
完整代码如下:
```python
import cv2
import numpy as np
import imutils
import pytesseract
# 加载图像并进行预处理
image = cv2.imread("car.jpg")
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
gray = cv2.bilateralFilter(gray, 11, 17, 17)
edged = cv2.Canny(gray, 30, 200)
# 查找轮廓并筛选出可能的车牌区域
cnts = cv2.findContours(edged.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:10]
screenCnt = None
for c in cnts:
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.018 * peri, True)
if len(approx) == 4:
screenCnt = approx
break
# 从图像中提取车牌区域
mask = np.zeros(gray.shape, dtype=np.uint8)
cv2.drawContours(mask, [screenCnt], -1, 255, -1)
mask = cv2.bitwise_and(gray, gray, mask=mask)
# 对车牌图像进行二值化和膨胀
thresh = cv2.threshold(mask, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
thresh = cv2.dilate(thresh, kernel, iterations=1)
# 提取车牌号码并进行识别
text = pytesseract.image_to_string(thresh, config='--psm 11')
print("Detected License Plate Number:", text.strip())
# 显示结果
cv2.imshow("Image", image)
cv2.imshow("Edged", edged)
cv2.imshow("Mask", mask)
cv2.imshow("Thresh", thresh)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
注意:这只是一个基础的车牌识别项目,实际应用中可能需要更复杂的算法和模型来提高准确率和鲁棒性。
阅读全文