解释代码:class BatchSampler(object): def __init__(self, sampler_size, batch_size=16, shuffle=True, drop_last=False): if batch_size <= 0: raise ValueError( "Illegal batch_size(= {}) detected".format(batch_size)) self.batch_size = batch_size self.drop_last = drop_last self.sampler_index = list(range(sampler_size)) self.sampler_size = sampler_size if shuffle: random.shuffle(self.sampler_index) def __len__(self): return self.sampler_size def __iter__(self): base = 0 step = self.batch_size while True: if base + step > self.sampler_size: break yield (self.sampler_index[base:base + step] if step != 1 else self.sampler_index[base]) base += step if not self.drop_last and base < self.sampler_size: yield self.sampler_index[base:]
时间: 2023-05-30 10:03:53 浏览: 240
GridSample.rar_VC2017表格类_beginners_grid sampler_vc表格_表格控件
这段代码定义了一个BatchSampler类,它的作用是将一个数据集分成多个batch,并可以进行随机打乱和去除最后一个不足batch的数据。
在初始化函数中,它接受四个参数:sampler_size表示数据集的大小,batch_size表示每个batch的大小,默认为16,shuffle表示是否进行随机打乱,默认为True,drop_last表示是否去除最后一个不足batch的数据,默认为False。如果batch_size小于等于0,则会抛出ValueError异常。
在__init__函数中,它将sampler_index初始化为一个包含0到sampler_size-1的整数列表,并进行随机打乱(如果shuffle为True)。
在__len__函数中,它返回sampler_size,表示整个数据集中的样本数量。
在__iter__函数中,它通过迭代器的方式依次返回每个batch的索引。它将一个指针base初始化为0,一个步长step初始化为batch_size,然后进入一个无限循环,每次取出从base到base+step-1的batch索引并返回,直到base+step大于等于sampler_size时跳出循环。如果drop_last为False且base小于sampler_size,则会将剩余的索引作为最后一个batch返回。
因此,通过使用BatchSampler类,我们可以轻松地将一个数据集分成多个batch,并可以进行随机打乱和去除最后一个不足batch的数据。
阅读全文