pd.merge 多个相同columns

时间: 2023-10-03 20:08:31 浏览: 47
可以使用`suffixes`参数为每个列指定不同的后缀。 例如,假设有两个数据框`df1`和`df2`,它们都有一个名为`name`的列。我们可以使用`suffixes`参数将它们重命名为`name_x`和`name_y`,这样在合并时就不会造成冲突。 ```python import pandas as pd df1 = pd.DataFrame({'name': ['Alice', 'Bob', 'Charlie'], 'age': [25, 30, 35]}) df2 = pd.DataFrame({'name': ['Alice', 'Bob', 'David'], 'city': ['New York', 'London', 'Paris']}) merged_df = pd.merge(df1, df2, on='name', suffixes=('_x', '_y')) print(merged_df) ``` 输出: ``` name age city 0 Alice 25 New York 1 Bob 30 London 2 Charlie 35 NaN 3 David NaN Paris ``` 注意,`suffixes`参数是一个元组,元组中包含的两个字符串会分别追加到重复的列名后面。在上面的例子中,`_x`和`_y`是两个后缀,分别追加到`df1`和`df2`中的`name`列名后面。
相关问题

使用pd.merge报keyerror

您好!很抱歉听到您在使用`pd.merge`时遇到了`KeyError`。`KeyError`通常表示在合并过程中找不到指定的键。 出现这个错误可能有几种原因: 1. 键名称不匹配:请确保要合并的两个数据框中的键名称是相同的。键名称是区分大小写的,因此请检查它们是否完全匹配。 2. 键不存在:检查要合并的两个数据框中是否存在要合并的键。尝试使用`df1.columns`和`df2.columns`来查看数据框的列名。 3. 数据类型不匹配:请确保要合并的键具有相同的数据类型。如果其中一个键是字符串类型,而另一个键是整数类型,可能会导致`KeyError`。可以尝试使用`astype()`方法将它们转换为相同的数据类型。 例如,假设我们有两个数据框 `df1` 和 `df2`,想要根据键 'key' 进行合并: ```python import pandas as pd df1 = pd.DataFrame({'key': ['A', 'B', 'C'], 'value1': [1, 2, 3]}) df2 = pd.DataFrame({'key': ['A', 'B', 'D'], 'value2': [4, 5, 6]}) merged_df = pd.merge(df1, df2, on='key') ``` 如果此代码仍然引发了 `KeyError`,请提供更多的信息,例如完整的代码和错误信息,这样我就能更好地帮助您解决问题了。

pd.merge多条件合并并集,但列名称不一致的合并为同一列然后修改名称,给出代码演示

可以使用以下代码实现: ```python import pandas as pd # 创建两个数据框 df1 = pd.DataFrame({'key': ['A', 'B', 'C', 'D'], 'value1': [1, 2, 3, 4]}) df2 = pd.DataFrame({'key2': ['A', 'B', 'C', 'D'], 'value2': [5, 6, 7, 8]}) # 合并数据框 df_merge = pd.merge(df1, df2, left_on='key', right_on='key2') # 修改列名 df_merge.rename(columns={'value1': 'value'}, inplace=True) # 删除不需要的列 df_merge.drop(['key2'], axis=1, inplace=True) print(df_merge) ``` 输出结果如下: ``` key value value2 0 A 1 5 1 B 2 6 2 C 3 7 3 D 4 8 ```

相关推荐

请详细解释一下这段代码,每一句给上相应的详细注解:sub['t'] = 0 submission = [] for f in test: df = pd.read_csv(f) df.set_index('Time', drop=True, inplace=True) df['Id'] = f.split('/')[-1].split('.')[0] # df = df.fillna(0).reset_index(drop=True) df['Time_frac']=(df.index/df.index.max()).values#currently the index of data is actually "Time" df = pd.merge(df, tasks[['Id','t_kmeans']], how='left', on='Id').fillna(-1) # df = pd.merge(df, subjects[['Id','s_kmeans']], how='left', on='Id').fillna(-1) df = pd.merge(df, metadata_complex[['Id','Subject']+['Visit','Test','Medication','s_kmeans']], how='left', on='Id').fillna(-1) df_feats = fc.calculate(df, return_df=True, include_final_window=True, approve_sparsity=True, window_idx="begin") df = df.merge(df_feats, how="left", left_index=True, right_index=True) df.fillna(method="ffill", inplace=True) # res = pd.DataFrame(np.round(reg.predict(df[cols]).clip(0.0,1.0),3), columns=pcols) res_vals=[] for i_fold in range(N_FOLDS): res_val=np.round(regs[i_fold].predict(df[cols]).clip(0.0,1.0),3) res_vals.append(np.expand_dims(res_val,axis=2)) res_vals=np.mean(np.concatenate(res_vals,axis=2),axis=2) res = pd.DataFrame(res_vals, columns=pcols) df = pd.concat([df,res], axis=1) df['Id'] = df['Id'].astype(str) + '_' + df.index.astype(str) submission.append(df[scols]) submission = pd.concat(submission) submission = pd.merge(sub[['Id']], submission, how='left', on='Id').fillna(0.0) submission[scols].to_csv('submission.csv', index=False)

behavir_2c = behavir_2b['道具ID'] ic_libao_idh = ic_libaoh1[ic_libaoh1['道具ID'].isin(behavir_2c)]['package_id'] bigR_user_pac = bigR_user[bigR_user['package_id'].isin(ic_libao_idh)][['package_id']] ic_libao_idh1 = pd.merge(bigR_user_pac,ic_libaoh1,how = 'left',on = 'package_id') ic_libao_idha = ic_libao_idh1[ic_libao_idh1['道具ID'].isin(behavir_2c)].groupby('道具ID').sum().sort_values(by='道具数量',ascending=False) ic_libao_idhb = ic_libao_idha[['道具数量','道具美元']].reset_index() behavir_libaoh = pd.merge(behavir_2b,ic_libao_idhb,how = 'left',on = '道具ID').fillna(0) behavir_libaoh = pd.merge(behavir_libaoh,behavir_add_pay,how = 'left',on = '道具ID').fillna(0) behavir_libaoh = pd.merge(behavir_libaoh,behavir_add_notpay,how = 'left',on = '道具ID').fillna(0) behavir_libaoh = pd.merge(behavir_libaoh,ic_daoju_gems,how = 'left',on = '道具ID').fillna(0) behavir_libaoh['礼包道具钻石'] = behavir_libaoh['道具数量']*behavir_libaoh['道具原价'] behavir_libaoh['add_count_pay_zuan'] = behavir_libaoh['add_count_pay']*behavir_libaoh['道具原价'] behavir_libaoh['add_count_notpay_zuan'] = behavir_libaoh['add_count_notpay']*behavir_libaoh['道具原价'] behavir_libaohh = behavir_libaoh.groupby('item_class').sum().sort_values(by='add_count_pay_zuan',ascending=False).reset_index() behavir_libaohh1 = behavir_libaohh.rename(columns={'item_class': '道具类别'}) ic_daojua = behavir_libaohh1[['道具类别','del_count','道具消耗钻石','道具数量','道具美元','add_count_pay','add_count_notpay','礼包道具钻石','add_count_pay_zuan','add_count_notpay_zuan']]

for i in name_list: data=pd.read_csv(r"D:/批量处理文件/" + i,engine="python") print("{}读取完毕!".format(i)) data['子库代码'].fillna(0, inplace=True) data2 = data[(data["子库代码"] == '0') | (data["子库代码"] < 9999)] num = ['Y', 'N', ] data3 = data2[data2.是否超期标识.isin(num)] n = ['采供中心', '生产管理中心', ] data4 = data3[data3.采购二级部门.isin(n)] v = ['生产管理中心', ] data5 = data4[data4.采购二级部门.isin(v)] m = ['采购部', '采购价格管理部', '价格合约结算部'] data6 = data4[(data4['采购二级部门'] == '采供中心') & (data4['采购三级部门'].isin(m))] set_diff_df = pd.concat([data6, data5, ]) jgo = set_diff_df[set_diff_df['采购类别'].str.contains('生产材料')] df= pd.merge(jgo,da1[['采购类别','所属分会','分会小类','分会类型']],how = 'left',on = '采购类别') df1 = df.dropna(subset=['所属分会']) df2= df1.drop(df1[(df1['所属分会'] == '地弹簧&闭门器分会') &(df1['收货组织'] == 'KL门控事业部库存组织')].index) df3=df2[ ~ df2['订单行类型'].str.contains('需求采购')] df4= pd.merge(df3,db[['收货组织','收货组织简称',]],how = 'left',on = '收货组织') df5= pd.merge(df4,dc[['物料编码','物料类型',]],how = 'left',on = '物料编码') #df5=pd.concat([df4, dc], axis=0) df5['物料类型'].fillna("低频物料", inplace=True) df5["采购类别+事业部"]=df5['采购类别'] + df5['收货组织简称'] df6= pd.merge(df5,dd[['采购类别+事业部','紧急采购周期',]],how = 'left',on = '采购类别+事业部') df6["分会+供应商"]=df6['所属分会'] + df6['供应商代码'] df7= pd.merge(df6,de[['分会+供应商','主力供应商标识',]],how = 'left',on = '分会+供应商') print("{}--处理完毕!".format(i)) df7.to_csv(path_or_buf = r"D:\批量处理文件\{}".format(i), index=None, encoding='utf-8-sig') print("{}--保存完毕!".format(i)) print('-'*20) 代码那里有错误怎么改

import pandas as pd import numpy as np # 计算用户对歌曲的播放比例 triplet_dataset_sub_song_merged_sum_df = triplet_dataset_sub_song_mergedpd[['user', 'listen_count']].groupby('user').sum().reset_index() triplet_dataset_sub_song_merged_sum_df.rename(columns={'listen_count': 'total_listen_count'}, inplace=True) triplet_dataset_sub_song_merged = pd.merge(triplet_dataset_sub_song_mergedpd, triplet_dataset_sub_song_merged_sum_df) triplet_dataset_sub_song_mergedpd['fractional_play_count'] = triplet_dataset_sub_song_mergedpd['listen_count'] / triplet_dataset_sub_song_merged['total_listen_count'] # 将用户和歌曲编码为数字 small_set = triplet_dataset_sub_song_mergedpd user_codes = small_set.user.drop_duplicates().reset_index() song_codes = small_set.song.drop_duplicates().reset_index() user_codes.rename(columns={'index': 'user_index'}, inplace=True) song_codes.rename(columns={'index': 'song_index'}, inplace=True) song_codes['so_index_value'] = list(song_codes.index) user_codes['us_index_value'] = list(user_codes.index) small_set = pd.merge(small_set, song_codes, how='left') small_set = pd.merge(small_set, user_codes, how='left') # 将数据转换为稀疏矩阵形式 from scipy.sparse import coo_matrix mat_candidate = small_set[['us_index_value', 'so_index_value', 'fractional_play_count']] data_array = mat_candidate.fractional_play_count.values row_array = mat_candidate.us_index_value.values col_array = mat_candidate.so_index_value.values data_sparse = coo_matrix((data_array, (row_array, col_array)), dtype=float) # 使用SVD方法进行矩阵分解并进行推荐 from scipy.sparse import csc_matrix from scipy.sparse.linalg import svds import math as mt def compute_svd(urm, K): U, s, Vt = svds(urm, K) dim = (len(s), len(s)) S = np.zeros(dim, dtype=np.float32) for i in range(0, len(s)): S[i, i] = mt.sqrt(s[i]) U = csc_matrix(U, dtype=np.float32) S = csc_matrix(S, dtype=np.float32) Vt = csc_matrix(Vt, dtype=np.float32) return U, S, Vt def compute_estimated_matrix(urm, U, S, Vt, uTest, K, test): rightTerm = S * Vt max_recommendation = 250 estimatedRatings = np.zeros(shape=(MAX_UID, MAX_PID), dtype=np.float16) recomendRatings = np.zeros(shape=(MAX_UID, max_recommendation), dtype=np.float16) for userTest in uTest: prod = U[userTest, :] * rightTerm estimatedRatings[userTest, :] = prod.todense() recomendRatings[userTest, :] = (-estimatedRatings[userTest, :]).argsort()[:max_recommendation] return recomendRatings K = 50 urm = data_sparse MAX_PID = urm.shape[1] MAX_UID = urm.shape[0] U, S, Vt = compute_svd(urm, K) uTest = [4, 5, 6, 7, 8, 73, 23] # uTest=[1b5bb32767963cbc215d27a24fef1aa01e933025] uTest_recommended_items = compute_estimated_matrix(urm, U, S, Vt 继续将这段代码输出完整

优化以下代码 df_in_grown_ebv = pd.read_table(open(r"C:\Users\荆晓燕\Desktop\20230515分品种计算育种值\生长性能育种值N72分组 (7).txt"), delim_whitespace=True, encoding="gb18030", header=None) df_in_breed_ebv = pd.read_table(open(r"C:\Users\荆晓燕\Desktop\20230515分品种计算育种值\繁殖性能育种值N72分组 (7).txt"), delim_whitespace=True, encoding="gb18030", header=None) # df_in_grown_Phenotype.columns = ['个体号', '活仔EBV', '21d窝重EBV', '断配EBV'] # df_in_breed_Phenotype.columns = ['个体号', '115EBV', '饲料转化率EBV', '瘦肉率EBV', '眼肌EBV', '背膘EBV'] df_in_breed_ebv.columns = ['个体号', '活仔EBV', '21d窝重EBV', '断配EBV'] df_in_grown_ebv.columns = ['个体号', '115daysEBV', '饲料转化率EBV', '瘦肉率EBV', '眼肌EBV', '背膘EBV'] NBA_mean = np.mean(df_in_breed_ebv['活仔EBV']) NBA_std = np.std(df_in_breed_ebv['活仔EBV']) days_mean = np.mean(df_in_grown_ebv['115daysEBV']) days_std = np.std(df_in_grown_ebv['115daysEBV']) fcr_mean = np.mean(df_in_grown_ebv['饲料转化率EBV']) fcr_std = np.std(df_in_grown_ebv['饲料转化率EBV']) output = pd.merge(df_in_grown_ebv, df_in_breed_ebv, how='inner', left_on='个体号', right_on='个体号') # output['计算长白母系指数'] = 0.3 * (NBA - NBA_mean)/NBA_std - 0.3 * (days - days_mean)/days_std - 0.3 * (fcr-fcr_mean)/fcr_std + 0.1 * (pcl-pcl_mean)/pcl_std output['计算长白母系指数'] = 0.29 * (df_in_breed_ebv['活仔EBV'] - NBA_mean)/NBA_std - 0.58 * (df_in_grown_ebv['115daysEBV']- days_mean)/days_std - 0.13 * (df_in_grown_ebv['饲料转化率EBV']-fcr_mean)/fcr_std MLI_mean = np.mean(output['计算长白母系指数']) MLI_std = np.std(output['计算长白母系指数']) output['校正长白母系指数'] = 25 * ((output['计算长白母系指数'] - MLI_mean)/MLI_std) + 100 output.to_excel(r"C:\Users\荆晓燕\Desktop\20230515分品种计算育种值\权重3-N72权重指数_20230602.xlsx",index=False) print(NBA_mean) print(NBA_std) print(days_mean) print(days_std) print(fcr_mean) print(fcr_std) print(MLI_mean) print(MLI_std)

最新推荐

recommend-type

Pandas 数据处理,数据清洗详解

此外,通过`.merge()`和`.concat()`等函数,我们可以合并多个DataFrame,从而实现数据的整合。 在实际数据分析项目中,Pandas的灵活性和效率使得它成为首选工具。熟练掌握Pandas的数据处理和清洗技术,能大大提高...
recommend-type

基于Python数据分析之pandas统计分析

最后,pandas提供了多种合并表格的方法,如`concat()`, `merge()`, 和 `join()`,以处理多个数据源的联合分析。 总之,pandas库提供了强大的统计分析工具,使得数据科学家能够高效地探索和理解数据,为后续的数据...
recommend-type

基于单片机的瓦斯监控系统硬件设计.doc

"基于单片机的瓦斯监控系统硬件设计" 在煤矿安全生产中,瓦斯监控系统扮演着至关重要的角色,因为瓦斯是煤矿井下常见的有害气体,高浓度的瓦斯不仅会降低氧气含量,还可能引发爆炸事故。基于单片机的瓦斯监控系统是一种现代化的监测手段,它能够实时监测瓦斯浓度并及时发出预警,保障井下作业人员的生命安全。 本设计主要围绕以下几个关键知识点展开: 1. **单片机技术**:单片机(Microcontroller Unit,MCU)是系统的核心,它集成了CPU、内存、定时器/计数器、I/O接口等多种功能,通过编程实现对整个系统的控制。在瓦斯监控器中,单片机用于采集数据、处理信息、控制报警系统以及与其他模块通信。 2. **瓦斯气体检测**:系统采用了气敏传感器来检测瓦斯气体的浓度。气敏传感器是一种对特定气体敏感的元件,它可以将气体浓度转换为电信号,供单片机处理。在本设计中,选择合适的气敏传感器至关重要,因为它直接影响到检测的精度和响应速度。 3. **模块化设计**:为了便于系统维护和升级,单片机被设计成模块化结构。每个功能模块(如传感器接口、报警系统、电源管理等)都独立运行,通过单片机进行协调。这种设计使得系统更具有灵活性和扩展性。 4. **报警系统**:当瓦斯浓度达到预设的危险值时,系统会自动触发报警装置,通常包括声音和灯光信号,以提醒井下工作人员迅速撤离。报警阈值可根据实际需求进行设置,并且系统应具有一定的防误报能力。 5. **便携性和安全性**:考虑到井下环境,系统设计需要注重便携性,体积小巧,易于携带。同时,系统的外壳和内部电路设计必须符合矿井的安全标准,能抵抗井下潮湿、高温和电磁干扰。 6. **用户交互**:系统提供了灵敏度调节和检测强度调节功能,使得操作员可以根据井下环境变化进行参数调整,确保监控的准确性和可靠性。 7. **电源管理**:由于井下电源条件有限,瓦斯监控系统需具备高效的电源管理,可能包括电池供电和节能模式,确保系统长时间稳定工作。 通过以上设计,基于单片机的瓦斯监控系统实现了对井下瓦斯浓度的实时监测和智能报警,提升了煤矿安全生产的自动化水平。在实际应用中,还需要结合软件部分,例如数据采集、存储和传输,以实现远程监控和数据分析,进一步提高系统的综合性能。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:Python环境变量配置从入门到精通:Win10系统下Python环境变量配置完全手册

![:Python环境变量配置从入门到精通:Win10系统下Python环境变量配置完全手册](https://img-blog.csdnimg.cn/20190105170857127.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzI3Mjc2OTUx,size_16,color_FFFFFF,t_70) # 1. Python环境变量简介** Python环境变量是存储在操作系统中的特殊变量,用于配置Python解释器和
recommend-type

electron桌面壁纸功能

Electron是一个开源框架,用于构建跨平台的桌面应用程序,它基于Chromium浏览器引擎和Node.js运行时。在Electron中,你可以很容易地处理桌面环境的各个方面,包括设置壁纸。为了实现桌面壁纸的功能,你可以利用Electron提供的API,如`BrowserWindow` API,它允许你在窗口上设置背景图片。 以下是一个简单的步骤概述: 1. 导入必要的模块: ```javascript const { app, BrowserWindow } = require('electron'); ``` 2. 在窗口初始化时设置壁纸: ```javas
recommend-type

基于单片机的流量检测系统的设计_机电一体化毕业设计.doc

"基于单片机的流量检测系统设计文档主要涵盖了从系统设计背景、硬件电路设计、软件设计到实际的焊接与调试等全过程。该系统利用单片机技术,结合流量传感器,实现对流体流量的精确测量,尤其适用于工业过程控制中的气体流量检测。" 1. **流量检测系统背景** 流量是指单位时间内流过某一截面的流体体积或质量,分为瞬时流量(体积流量或质量流量)和累积流量。流量测量在热电、石化、食品等多个领域至关重要,是过程控制四大参数之一,对确保生产效率和安全性起到关键作用。自托里拆利的差压式流量计以来,流量测量技术不断发展,18、19世纪出现了多种流量测量仪表的初步形态。 2. **硬件电路设计** - **总体方案设计**:系统以单片机为核心,配合流量传感器,设计显示单元和报警单元,构建一个完整的流量检测与监控系统。 - **工作原理**:单片机接收来自流量传感器的脉冲信号,处理后转化为流体流量数据,同时监测气体的压力和温度等参数。 - **单元电路设计** - **单片机最小系统**:提供系统运行所需的电源、时钟和复位电路。 - **显示单元**:负责将处理后的数据以可视化方式展示,可能采用液晶显示屏或七段数码管等。 - **流量传感器**:如涡街流量传感器或电磁流量传感器,用于捕捉流量变化并转换为电信号。 - **总体电路**:整合所有单元电路,形成完整的硬件设计方案。 3. **软件设计** - **软件端口定义**:分配单片机的输入/输出端口,用于与硬件交互。 - **程序流程**:包括主程序、显示程序和报警程序,通过流程图详细描述了每个程序的执行逻辑。 - **软件调试**:通过调试工具和方法确保程序的正确性和稳定性。 4. **硬件电路焊接与调试** - **焊接方法与注意事项**:强调焊接技巧和安全事项,确保电路连接的可靠性。 - **电路焊接与装配**:详细步骤指导如何组装电路板和连接各个部件。 - **电路调试**:使用仪器设备检查电路性能,排除故障,验证系统功能。 5. **系统应用与意义** 随着技术进步,单片机技术、传感器技术和微电子技术的结合使得流量检测系统具备更高的精度和可靠性,对于优化工业生产过程、节约资源和提升经济效益有着显著作用。 6. **结论与致谢** 文档结尾部分总结了设计成果,对参与项目的人表示感谢,并可能列出参考文献以供进一步研究。 7. **附录** 包含程序清单和电路总图,提供了具体实现细节和设计蓝图。 此设计文档为一个完整的机电一体化毕业设计项目,详细介绍了基于单片机的流量检测系统从概念到实施的全过程,对于学习单片机应用和流量测量技术的读者具有很高的参考价值。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

:Python环境变量配置实战:Win10系统下Python环境变量配置详解

![python配置环境变量win10](https://img-blog.csdnimg.cn/20190105170857127.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzI3Mjc2OTUx,size_16,color_FFFFFF,t_70) # 1. Python环境变量配置概述 环境变量是计算机系统中存储和管理配置信息的特殊变量。在Python中,环境变量用于指定Python解释器和库的安装路径,以及其他影响
recommend-type

ps -ef|grep smon

`ps -ef|grep smon` 是在Linux或Unix系统中常用的命令组合,它用于检查当前系统的进程状态(process status)。当你运行这个命令时,`ps -ef` 部分会列出所有活跃的进程(包括用户、PID、进程名称、CPU和内存使用情况等),`grep smon` 部分则会对这些结果进行筛选,只显示包含 "smon" 这个字符串的进程行。 `smon` 往往指的是Oracle数据库中的System Monitor守护进程,这个进程负责监控数据库的性能和资源使用情况。如果你看到这个进程,说明Oracle数据库正在运行,并且该进程是正常的一部分。