tenengrad梯度函数python实现
时间: 2023-07-07 14:15:48 浏览: 223
Tenengrad梯度函数可以通过以下Python代码实现:
```python
import numpy as np
def tenengrad(img):
# 计算图像在x和y方向上的梯度
sobel_x = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]])
sobel_y = np.array([[-1, -2, -1], [0, 0, 0], [1, 2, 1]])
gx = np.abs(np.convolve(img.flatten(), sobel_x.flatten(), mode='same').reshape(img.shape))
gy = np.abs(np.convolve(img.flatten(), sobel_y.flatten(), mode='same').reshape(img.shape))
# 计算Tenengrad梯度
gx2 = np.multiply(gx, gx)
gy2 = np.multiply(gy, gy)
gxgy = np.multiply(gx, gy)
sigma_gx2 = np.convolve(gx2.flatten(), np.ones((3, 3)).flatten(), mode='same').reshape(img.shape)
sigma_gy2 = np.convolve(gy2.flatten(), np.ones((3, 3)).flatten(), mode='same').reshape(img.shape)
sigma_gxgy = np.convolve(gxgy.flatten(), np.ones((3, 3)).flatten(), mode='same').reshape(img.shape)
tgrad = np.sqrt(np.divide(np.multiply(sigma_gy2, sigma_gx2) - np.square(sigma_gxgy), sigma_gy2 + sigma_gx2))
return tgrad
```
其中,`img`为输入的灰度图像,输出为计算出的Tenengrad梯度图像。
阅读全文