基于改进正态分布变换算法的点云配准
正态分布变换(NDT)算法是一种应用在同时定位和地图生成(SLAM)中的点云配准算法。针对地面激光扫描(TLS)数据的特点,改进了NDT 算法,提出了一种基于SURF 的NDT 配准算法,使之能应用在TLS 中。该算法首先建立点云和图像间的映射关系把点云影像化;利用加速稳健特征(SURF)算法提取图像的特征点并找出特征点对;根据映射关系找到相应的三维特征匹配点,求出变换矩阵,完成点云初始配准。在NDT 算法中,设置初始矩阵为单位矩阵,对点云体素化并使用概率分布函数对点云精细配准。实验结果证明,该算法不但适用于地面激光数据的配准,且其配准精度高、运算时间少,尤其对于不同分辨率的点云有良好的配准效果。