# 把文档转换成矩阵 valid_vec = model_tfidf.transform(valid_X) pre_valid = clf.predict_proba(valid_vec) print(pre_valid[:5]) pre_valid = clf.predict(valid_vec) print('正例:',sum(pre_valid == 1)) print('负例:',sum(pre_valid == 0)) from sklearn.metrics import accuracy_score score = accuracy_score(pre_valid,valid_y) print("准确率:",score) 以上代码为上面问题代码的后续内容,分析一下准确率跟正例负例是真么来的,并添加一段代码显示混淆矩阵
时间: 2024-01-24 21:17:12 浏览: 114
首先,代码中的 `model_tfidf` 是一个 TF-IDF 模型对象,`valid_X` 是用于验证的文本数据,`valid_y` 是对应的标签数据。`valid_vec = model_tfidf.transform(valid_X)` 将验证集文本数据转换为稀疏矩阵表示,并且使用训练好的分类器 `clf` 对其进行预测,得到预测结果 `pre_valid`。`clf.predict_proba(valid_vec)` 返回的是每个样本属于各个类别的概率,而 `clf.predict(valid_vec)` 则是返回每个样本最可能属于的类别。`sum(pre_valid == 1)` 统计预测为正例的数量,`sum(pre_valid == 0)` 统计预测为负例的数量。
准确率计算使用了 `sklearn.metrics` 中的 `accuracy_score` 函数,该函数用于计算预测结果和真实标签之间的准确率。具体地,`score = accuracy_score(pre_valid,valid_y)` 计算了预测结果 `pre_valid` 和标签数据 `valid_y` 之间的准确率。
混淆矩阵可以通过 `sklearn.metrics` 中的 `confusion_matrix` 函数来计算。该函数的参数是真实标签和预测结果,返回的是混淆矩阵。具体代码如下:
```
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(valid_y, pre_valid)
print("混淆矩阵:")
print(cm)
```
其中 `valid_y` 是真实标签,`pre_valid` 是预测结果。输出的混淆矩阵中,行代表真实标签,列代表预测结果,矩阵中的数字表示样本数。例如,混淆矩阵中的第一行第一列数字表示真实标签为负例、预测结果为负例的样本数。
阅读全文