用MATLAB设计KNN算法
时间: 2023-11-18 19:12:59 浏览: 110
使用matlab实现knn算法
MATLAB中可以使用自带的ClassificationKNN函数来实现KNN算法。下面是一个简单的KNN分类器的示例代码:
1. 准备数据
在这个示例中,我们使用MATLAB自带的鸢尾花数据集。首先需要将数据集分为训练集和测试集。
```matlab
% Load iris dataset
load fisheriris
% Split the dataset into training and testing sets
cv = cvpartition(species,'HoldOut',0.3);
Xtrain = meas(cv.training,:);
Ytrain = species(cv.training);
Xtest = meas(cv.test,:);
Ytest = species(cv.test);
```
2. 训练模型
使用ClassificationKNN函数来训练模型。在这个示例中,我们将K值设置为5。
```matlab
% Train KNN classifier
mdl = fitcknn(Xtrain,Ytrain,'NumNeighbors',5);
```
3. 测试模型
使用测试集来测试模型的准确性。
```matlab
% Test the model
Ypred = predict(mdl,Xtest);
% Calculate classification accuracy
accuracy = sum(Ypred == Ytest)/length(Ytest);
fprintf('Classification accuracy: %.2f%%\n', accuracy*100);
```
完整代码如下:
```matlab
% Load iris dataset
load fisheriris
% Split the dataset into training and testing sets
cv = cvpartition(species,'HoldOut',0.3);
Xtrain = meas(cv.training,:);
Ytrain = species(cv.training);
Xtest = meas(cv.test,:);
Ytest = species(cv.test);
% Train KNN classifier
mdl = fitcknn(Xtrain,Ytrain,'NumNeighbors',5);
% Test the model
Ypred = predict(mdl,Xtest);
% Calculate classification accuracy
accuracy = sum(Ypred == Ytest)/length(Ytest);
fprintf('Classification accuracy: %.2f%%\n', accuracy*100);
```
这个示例中,KNN算法的准确性为93.33%。
阅读全文