bccomp($actual_price, $payLog->total_fee, 3) !== 0

时间: 2024-04-03 12:32:34 浏览: 17
这段代码使用了 `bccomp()` 函数来比较两个任意精度的数字 `$actual_price` 和 `$payLog->total_fee` 是否相等,其中第三个参数 3 表示比较结果的精度为小数点后三位。 如果 `bccomp()` 函数的返回值不等于0,则说明 `$actual_price` 和 `$payLog->total_fee` 不相等。如果返回值小于0,则表示 `$actual_price` 小于 `$payLog->total_fee`;如果返回值大于0,则表示 `$actual_price` 大于 `$payLog->total_fee`。 这段代码可能用于验证用户支付时提交的金额与实际支付的金额是否一致。如果你有任何关于 `bccomp()` 函数或这段代码的疑问,欢迎继续向我提问。
相关问题

解释这段代码 float Pos = 0; pid->ek = pid->SetValue - pid->ActualValue; pid->ek_sum += pid->ek; if(pid->ek_sum > pid->Sum_max) pid->ek_sum = pid->Sum_max; if(pid->ek_sum < pid->Sum_min) pid->ek_sum = pid->Sum_min; Pos = pid->KP * pid->ek + pid->KI * pid->ek_sum + pid->KD * (pid->ek - pid->ek_1); pid->ek_2 = pid->ek_1; pid->ek_1 = pid->ek; if(flag == 1) { if(Pos > pid->PIDmax) Pos = pid->PIDmax; if(Pos < pid->PIDmin) Pos = pid->PIDmin; } pid->PIDout = Pos; return pid->PIDout;

这段代码是一个PID控制器的实现。PID控制器是一种常用的反馈控制算法,用于控制系统的稳定性和精度。 首先,代码定义了一个名为`Pos`的浮点型变量,并初始化为0。 然后,代码计算了误差项`ek`,通过将设定值`pid->SetValue`减去实际值`pid->ActualValue`得到。 接下来,代码累加误差项到积分项`ek_sum`中。 然后,代码对积分项进行限幅处理。如果积分项大于设定的最大限制值`pid->Sum_max`,则将积分项设置为最大限制值;如果积分项小于最小限制值`pid->Sum_min`,则将积分项设置为最小限制值。 接着,代码根据PID控制器的参数计算出控制量`Pos`。使用比例参数`pid->KP`乘以误差项`pid->ek`,加上积分参数`pid->KI`乘以积分项`pid->ek_sum`,再加上微分参数`pid->KD`乘以误差项与上一次误差项之差`(pid->ek - pid->ek_1)`。 代码接着更新上一次误差项和当前误差项。将当前误差项赋值给上一次误差项`pid->ek_1`,而将当前误差项`pid->ek`赋值给上上次误差项`pid->ek_2`。 然后,代码根据标志位`flag`进行输出限幅。如果`flag`为1,说明需要进行输出限幅处理。如果控制量`Pos`大于设定的最大输出限制值`pid->PIDmax`,则将控制量设置为最大输出限制值;如果控制量小于最小输出限制值`pid->PIDmin`,则将控制量设置为最小输出限制值。 最后,代码将控制量`Pos`赋值给PID控制器结构体中的输出量`pid->PIDout`,并返回该输出量。 总结起来,这段代码根据PID控制器的参数和当前误差项计算出控制量,并对积分项进行限幅处理和输出限幅处理,最后返回PID控制器的输出量。

具体注释以下代码void PID_init(PID * pp) { memset(pp, 0, sizeof(PID));//memset是一个初始化函数,作用是将某一块内存中的全部设置为指定的值。 } float PID_realize(PID *pp, float NextPoint,float SetPoint) { float index; pp->Set = SetPoint; pp->Actual = NextPoint; pp->err = pp->Set - NextPoint; if(fabs(pp->err)>1000) //8.00 变积分过程 { index=0.0; }else if(fabs(pp->err)<200){ //2.00 index=1.0; pp->integral+=pp->err; }else{ index=(1000-fabs(pp->err))/800; pp->integral+=pp->err; } pp->out = pp->Kp*pp->err + index*pp->Ki*pp->integral + pp->Kd*(pp->err-pp->err_last); pp->err_LastLastlast = pp->err_Lastlast; pp->err_Lastlast = pp->err_last; pp->err_last = pp->err; return pp->out; } float LowTemPID_realize(PID *pp, float NextPoint,float SetPoint) { float index; pp->Set = SetPoint; pp->Actual = NextPoint; pp->err = pp->Set - NextPoint; if(fabs(pp->err)>200) //1.00 变积分过程 { index=0.0; pp->integral = 0; }else if(fabs(pp->err)<50){ index=1.0; pp->integral+=pp->err; }else{ index=(200-fabs(pp->err))/150; pp->integral+=pp->err; } pp->out = pp->Kp*pp->err + index*pp->Ki*pp->integral + pp->Kd*(pp->err-pp->err_last); pp->err_LastLastlast = pp->err_Lastlast; pp->err_Lastlast = pp->err_last; pp->err_last = pp->err; return pp->out; }

这段代码实现了一个PID控制器。PID控制器是一种常用的控制器,其全称为比例-积分-微分控制器。它根据被控对象的反馈信号与给定值之间的误差,通过比例、积分和微分三个部分的组合来调节被控对象的输出,最终达到控制目标的效果。 在这段代码中,PID_init函数是用于初始化PID结构体的函数,使用了memset函数将其全部置为0。PID_realize和LowTemPID_realize函数则分别实现了PID控制器的两个不同模式的控制,分别是普通模式和低温模式。两个函数的参数包括PID结构体指针、当前值和设定值。其中,变量index用于根据误差的大小来动态调整积分项的系数,即变积分过程。最后,函数返回PID控制器的输出值pp->out。

相关推荐

帮我解释一下 PID_TypeDef g_location_pid; /* 位置PID参数结构体*/ /** * @brief 初始化PID参数 * @param 无 * @retval 无 / void pid_init(void) { /位置环初始化/ g_location_pid.SetPoint = (float)(50PPM); /* 设定目标Desired Value*/ g_location_pid.ActualValue = 0.0; /* 期望值*/ g_location_pid.SumError = 0.0; /* 积分值*/ g_location_pid.Error = 0.0; /* Error[1]/ g_location_pid.LastError = 0.0; / Error[-1]/ g_location_pid.PrevError = 0.0; / Error[-2]/ g_location_pid.Proportion = L_KP; / 比例常数 Proportional Const*/ g_location_pid.Integral = L_KI; /* 积分常数 Integral Const*/ g_location_pid.Derivative = L_KD; /* 微分常数 Derivative Const*/ g_location_pid.IngMax = 20; g_location_pid.IngMin = -20; g_location_pid.OutMax = 150; /* 输出限制 / g_location_pid.OutMin = -150; } /* * 函数名称:位置闭环PID控制设计 * 输入参数:当前控制量 * 返 回 值:目标控制量 * 说 明:无 */ int32_t increment_pid_ctrl(PID_TypeDef PID,float Feedback_value) { PID->Error = (float)(PID->SetPoint - Feedback_value); / 偏差 / #if INCR_LOCT_SELECT PID->ActualValue += (PID->Proportion * (PID->Error - PID->LastError)) / E[k]项 / + (PID->Integral * PID->Error) / E[k-1]项 / + (PID->Derivative * (PID->Error - 2 * PID->LastError + PID->PrevError)); / E[k-2]项 / PID->PrevError = PID->LastError; / 存储误差,用于下次计算 / PID->LastError = PID->Error; #else PID->SumError += PID->Error; if(PID->SumError > PID->IngMax) { PID->SumError = PID->IngMax; } else if(PID->SumError < PID->IngMin) { PID->SumError = PID->IngMin; } PID->ActualValue = (PID->Proportion * PID->Error) / E[k]项 / + (PID->Integral * PID->SumError) / E[k-1]项 / + (PID->Derivative * (PID->Error - PID->LastError)); / E[k-2]项 / PID->LastError = PID->Error; #endif if(PID->ActualValue > PID->OutMax) { PID->ActualValue = PID->OutMax; } else if(PID->ActualValue < PID->OutMin) { PID->ActualValue = PID->OutMin; } return ((int32_t)(PID->ActualValue)); / 返回实际控制数值 */ }

import pandas as pd import numpy as np import os from pprint import pprint from pandas import DataFrame from scipy import interpolate data_1_hour_predict_raw = pd.read_excel('./data/附件1 监测点A空气质量预报基础数据.xlsx' ) data_1_hour_actual_raw = pd.read_excel('./data/附件1 监测点A空气质量预报基础数据.xlsx' ) data_1_day_actual_raw = pd.rea df_1_predict = data_1_hour_actual_raw df_1_actual = data_1_day_actual_raw df_1_predict.set_axis( ['time', 'place', 'so2', 'no2', 'pm10', 'pm2.5', 'o3', 'co', 'temperature', 'humidity', 'pressure', 'wind', 'direction'], axis='columns', inplace=True) df_1_actual.set_axis(['time', 'place', 'so2', 'no2', 'pm10', 'pm2.5', 'o3', 'co'], axis='columns', inplace=True) modeltime_df_actual = df_1_actual['time'] modeltime_df_pre = df_1_predict['time'] df_1_actual = df_1_actual.drop(columns=['place', 'time']) df_1_predict = df_1_predict.drop(columns=['place', 'time']) df_1_predict = df_1_predict.replace('—', np.nan) df_1_predict = df_1_predict.astype('float') df_1_predict[df_1_predict < 0] = np.nan # 重新插入time列 df_1_actual.insert(0, 'time', modeltime_df_actual) df_1_predict.insert(0, 'time', modeltime_df_pre) # 线性插值的方法需要单独处理最后一行的数据 data_1_actual = df_1_actual[0:-3] data_1_predict = df_1_predict data_1_predict.iloc[-1:]['pm10'] = 22.0 data_1_actual_knn = df_1_actual[0:-3] data_1_predict_knn: DataFrame = df_1_predict for indexs in data_1_actual.columns: if indexs == 'time': continue data_1_actual['rownum'] = np.arange(data_1_actual.shape[0]) df_nona = data_1_actual.dropna(subset=[indexs]) f = interpolate.interp1d(df_nona['rownum'], df_nona[indexs]) data_1_actual[indexs] = f(data_1_actual['rownum']) data_1_actual = data_1_actual.drop(columns=['rownum']) for indexs in data_1_predict.columns: if indexs == 'time': continue data_1_predict['rownum'] = np.arange(data_1_predict.shape[0]) df_nona = data_1_predict.dropna(subset=[indexs]) f = interpolate.interp1d(df_nona['rownum'], df_nona[indexs]) data_1_predict[indexs] = f(data_1_predict['rownum']) data_1_predict = data_1_predict.drop(columns=['rownum']) writer = pd.E

给下列程序添加注释:void DWAPlannerROS::initialize( std::string name, tf2_ros::Buffer* tf, costmap_2d::Costmap2DROS* costmap_ros) { if (! isInitialized()) { ros::NodeHandle private_nh("~/" + name); g_plan_pub_ = private_nh.advertise("global_plan", 1); l_plan_pub_ = private_nh.advertise("local_plan", 1); tf_ = tf; costmap_ros_ = costmap_ros; costmap_ros_->getRobotPose(current_pose_); // make sure to update the costmap we'll use for this cycle costmap_2d::Costmap2D* costmap = costmap_ros_->getCostmap(); planner_util_.initialize(tf, costmap, costmap_ros_->getGlobalFrameID()); //create the actual planner that we'll use.. it'll configure itself from the parameter server dp_ = boost::shared_ptr<DWAPlanner>(new DWAPlanner(name, &planner_util_)); if( private_nh.getParam( "odom_topic", odom_topic_ )) { odom_helper_.setOdomTopic( odom_topic_ ); } initialized_ = true; // Warn about deprecated parameters -- remove this block in N-turtle nav_core::warnRenamedParameter(private_nh, "max_vel_trans", "max_trans_vel"); nav_core::warnRenamedParameter(private_nh, "min_vel_trans", "min_trans_vel"); nav_core::warnRenamedParameter(private_nh, "max_vel_theta", "max_rot_vel"); nav_core::warnRenamedParameter(private_nh, "min_vel_theta", "min_rot_vel"); nav_core::warnRenamedParameter(private_nh, "acc_lim_trans", "acc_limit_trans"); nav_core::warnRenamedParameter(private_nh, "theta_stopped_vel", "rot_stopped_vel"); dsrv_ = new dynamic_reconfigure::Server<DWAPlannerConfig>(private_nh); dynamic_reconfigure::Server<DWAPlannerConfig>::CallbackType cb = boost::bind(&DWAPlannerROS::reconfigureCB, this, _1, 2); dsrv->setCallback(cb); } else{ ROS_WARN("This planner has already been initialized, doing nothing."); } }

最新推荐

recommend-type

JSONException:com.alibaba.fastjson.JSONException: expect ‘:’ at 0, actual = 已解决

expect ‘:’ at 0, actual = com.alibaba.fastjson.JSONException: expect ‘:’ at 0, actual = 原因: 该异常为运行时异常,一定不是语法错误。 意思是JSONEObject转换异常,通常为fromObject() 方法位置报错。 ...
recommend-type

java+毕业设计+扫雷(程序).rar

ensp校园网络毕业设计,java+毕业设计+扫雷(程序)
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

云原生架构与soa架构区别?

云原生架构和SOA架构是两种不同的架构模式,主要有以下区别: 1. 设计理念不同: 云原生架构的设计理念是“设计为云”,注重应用程序的可移植性、可伸缩性、弹性和高可用性等特点。而SOA架构的设计理念是“面向服务”,注重实现业务逻辑的解耦和复用,提高系统的灵活性和可维护性。 2. 技术实现不同: 云原生架构的实现技术包括Docker、Kubernetes、Service Mesh等,注重容器化、自动化、微服务等技术。而SOA架构的实现技术包括Web Services、消息队列等,注重服务化、异步通信等技术。 3. 应用场景不同: 云原生架构适用于云计算环境下的应用场景,如容器化部署、微服务
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

数字舵机控制程序流程图

以下是数字舵机控制程序的流程图: ![数字舵机控制程序流程图](https://i.imgur.com/2fgKUQs.png) 1. 初始化引脚:设置舵机控制引脚为输出模式。 2. 初始化舵机:将舵机控制引脚输出的PWM信号设置为初始值,初始化舵机的位置。 3. 接收控制信号:通过串口或者其他方式接收舵机控制信号。 4. 解析控制信号:解析接收到的控制信号,确定舵机需要转动的角度和方向。 5. 转动舵机:根据解析后的控制信号,设置舵机控制引脚输出的PWM信号的占空比,使舵机转动到目标位置。 6. 延时:为了保证舵机转动到目标位置后稳定,需要延时一段时间。 7. 返回接收控制信