编写scala根据dwd层usercontinueorder表统计在两天内连续下单并且下单金额保持增长的用户,存入MySQL数据库shtd_result的usercontinueorder表
时间: 2023-11-28 22:49:51 浏览: 297
假设dwd层usercontinueorder表结构如下:
| 字段名 | 类型 | 说明 |
| --- | --- | --- |
| user_id | string | 用户ID |
| order_date | string | 下单日期 |
| order_amount | double | 下单金额 |
首先,我们需要编写一个SQL语句来筛选出在两天内连续下单的用户,并计算他们的下单金额增长率。SQL语句如下:
```sql
SELECT
t1.user_id,
t2.order_date AS start_date,
t1.order_date AS end_date,
(t1.order_amount - t2.order_amount) / t2.order_amount AS amount_growth_rate
FROM
dwd.usercontinueorder t1
JOIN dwd.usercontinueorder t2 ON t1.user_id = t2.user_id
WHERE
t1.order_date = date_add(t2.order_date, INTERVAL 1 DAY)
AND t1.order_amount > t2.order_amount
```
接下来,我们可以使用Spark将查询结果写入MySQL数据库。完整的Scala代码如下:
```scala
import org.apache.spark.sql.SparkSession
object UserContinueOrder {
def main(args: Array[String]): Unit = {
val spark = SparkSession.builder()
.appName("UserContinueOrder")
.getOrCreate()
// 读取dwd层usercontinueorder表
val usercontinueorder = spark.read
.format("jdbc")
.option("url", "jdbc:mysql://localhost:3306/shtd?useSSL=false")
.option("driver", "com.mysql.jdbc.Driver")
.option("dbtable", "dwd.usercontinueorder")
.option("user", "root")
.option("password", "root")
.load()
// 注册为临时表
usercontinueorder.createOrReplaceTempView("usercontinueorder")
// 查询连续下单并下单金额保持增长的用户
val result = spark.sql(
"""
|SELECT
| t1.user_id,
| t2.order_date AS start_date,
| t1.order_date AS end_date,
| (t1.order_amount - t2.order_amount) / t2.order_amount AS amount_growth_rate
|FROM
| usercontinueorder t1
| JOIN usercontinueorder t2 ON t1.user_id = t2.user_id
|WHERE
| t1.order_date = date_add(t2.order_date, INTERVAL 1 DAY)
| AND t1.order_amount > t2.order_amount
|""".stripMargin)
// 写入MySQL数据库
result.write
.format("jdbc")
.option("url", "jdbc:mysql://localhost:3306/shtd?useSSL=false")
.option("driver", "com.mysql.jdbc.Driver")
.option("dbtable", "shtd_result.usercontinueorder")
.option("user", "root")
.option("password", "root")
.save()
spark.stop()
}
}
```
注意,代码中需要替换MySQL数据库的连接信息和认证信息。同时,还需要将MySQL驱动程序的JAR包添加到项目中以便在Spark中使用。
阅读全文