定义函数main(),输入正整数n,计算并输出下列算式的值。要求调用函数fact( n)计算n! ,函数返回值类型是double。

时间: 2023-05-31 22:18:09 浏览: 310
### 回答1: 好的,下面是用中文回复: 函数main()的定义如下: ```c++ #include <iostream> using namespace std; double fact(int n); // 声明函数fact() int main() { int n; cout << "请输入正整数n:"; cin >> n; double res = ; for (int i = 1; i <= n; i++) { res += fact(i) / i; } cout << "结果是:" << res << endl; return ; } ``` 其中,函数fact()的定义如下: ```c++ double fact(int n) { double res = 1; for (int i = 1; i <= n; i++) { res *= i; } return res; } ``` 这个程序的作用是,输入一个正整数n,然后计算并输出下列算式的值: $$ \sum_{i=1}^n \frac{i!}{i} $$ 其中,$i!$ 表示 $i$ 的阶乘,即 $i!=1\times2\times\cdots\times i$。 程序的思路是,用一个循环从 $1$ 到 $n$ 遍历每个 $i$,然后调用函数fact()计算 $i!$,再除以 $i$,最后累加到结果中。最终输出结果。 ### 回答2: 题目描述: 定义函数main(),输入正整数n,计算并输出下列算式的值: $$ f(n) = \sqrt[3]{\frac{1^3 + 2^3 + ... + n^3}{n! + (n-1)! + ... + 1!}} $$ 要求调用函数fact(n)计算n! ,函数返回值类型是double。 解析: 根据题目描述,我们需要定义函数main(),输入正整数n,计算上述算式的值并输出。首先,我们需要定义一个计算$n!$的函数fact(n),并将其返回值类型确定为double类型。这个函数最简单的实现方式是使用递归的方法来实现: ```C++ double fact(int n) { if (n == 1) { return 1; } else { return n * fact(n - 1); } } ``` 接着,我们需要在main函数中计算上述算式的值。根据算式,我们可以使用一个循环来计算$1^3 + 2^3 + ... + n^3$ 和 $n! + (n-1)! + ... + 1!$,计算过程大致如下: ```C++ int sum1 = 0, sum2 = 0; for (int i = 1; i <= n; i++) { sum1 += pow(i, 3); //计算1^3 + 2^3 + ... + n^3 sum2 += fact(i); //计算n! + (n-1)! + ... + 1! } ``` 然后,我们计算算式的值并输出即可: ```C++ double result = pow(sum1 * 1.0 / sum2, 1.0 / 3); //计算f(n) cout << result << endl; //输出结果 ``` 完整代码如下: ```C++ #include<iostream> #include<cmath> using namespace std; double fact(int n) { if (n == 1) { return 1; } else { return n * fact(n - 1); } } int main() { int n; cin >> n; int sum1 = 0, sum2 = 0; for (int i = 1; i <= n; i++) { sum1 += pow(i, 3); sum2 += fact(i); } double result = pow(sum1 * 1.0 / sum2, 1.0 / 3); cout << result << endl; return 0; } ``` ### 回答3: 题目要求我们定义函数main(),并且输入正整数n,计算并输出下列算式的值,算式中需要调用函数fact(n)来计算n!。下面就来详细解释一下如何实现这个题目要求。 首先,我们需要定义一个函数fact(n),用来计算n的阶乘(即n!)。这个函数的返回值类型是double,因为n的阶乘可能很大,需要用double类型来存储。下面是fact(n)函数的代码: ``` double fact(int n) { double result = 1; for (int i = 1; i <= n; i++) { result *= i; } return result; } ``` 上面的代码中,我们使用了一个for循环来计算n的阶乘,将结果保存在result变量中,并返回它。 接下来,我们定义主函数main(),并在里面调用fact(n)函数来计算下列算式的值: ``` double result = 0; for (int i = 1; i <= n; i++) { result += fact(i) / i; } cout << result << endl; ``` 上面的代码中,我们定义了一个result变量,用来保存下列算式的结果。在for循环中,我们依次计算n! / 1,n! / 2,...,n! / n,并将它们加起来保存在result变量中。最后,我们输出result的值即可。 完整代码如下: ``` #include <iostream> using namespace std; double fact(int n) { double result = 1; for (int i = 1; i <= n; i++) { result *= i; } return result; } int main() { int n; cin >> n; double result = 0; for (int i = 1; i <= n; i++) { result += fact(i) / i; } cout << result << endl; return 0; } ``` 以上就是本题目的详细解析和代码实现。
阅读全文

相关推荐

大家在看

recommend-type

软件工程-总体设计概述(ppt-113页).ppt

软件工程-总体设计概述(ppt-113页).ppt
recommend-type

欧姆龙编码器E6B2-CWZ6C

本文档介绍了欧姆龙编码器的基本数据以及使用方式,可以供给那些需要使用欧姆龙编码器的同学阅读
recommend-type

中国移动5G规模试验测试规范--核心网领域--SA基础网元性能测试分册.pdf

目 录 前 言............................................................................................................................ 1 1. 范围........................................................................................................................... 2 2. 规范性引用文件....................................................................................................... 2 3. 术语、定义和缩略语............................................................................................... 2 3.1. 测试对象........................................................................................................ 3 4. 测试对象及网络拓扑............................................................................................... 3 ................................................................................................................................ 3 4.1. 测试组网........................................................................................................ 3 5. 业务模型和测试方法............................................................................................... 6 5.1. 业务模型........................................................................................................ 6 5.2. 测试方法........................................................................................................ 7 6. 测试用例................................................................................................................... 7 6.1. AMF性能测试................................................................................................ 7 6.1.1. 注册请求处理能力测试..................................................................... 7 6.1.2. 基于业务模型的单元容量测试.........................................................9 6.1.3. AMF并发连接管理性能测试........................................................... 10 6.2. SMF性能测试............................................................................................... 12 6.2.1. 会话创建处理能力测试................................................................... 12 6.2.2. 基
recommend-type

Pr1Wire2432Eng_reset_2432_

THIS SOFTWARE IS DESIGNED TO RESET CHIP 2432
recommend-type

10-虚拟内存的基本概念和请求分页处理方式.pdf

虚拟内存的基本概念和请求分页处理方式

最新推荐

recommend-type

python递归计算N!的方法

”时,我们实际上是在谈论计算一个正整数N的阶乘,即所有从1到N的正整数的乘积。例如,5!(5的阶乘)等于5 * 4 * 3 * 2 * 1,结果是120。 在提供的代码中,`factorial`函数展示了如何使用递归来计算阶乘。这个函数...
recommend-type

python递归函数求n的阶乘,优缺点及递归次数设置方式

阶乘的定义是对于非负整数n,n的阶乘表示为所有小于等于n的正整数的乘积,记作n!。例如,5! = 5 × 4 × 3 × 2 × 1 = 120。下面是一个简单的递归函数实现: ```python def calnum(num): if num != 1: csum = ...
recommend-type

Python 实现输入任意多个数,并计算其平均值的例子

之后,定义了两个函数:`sum(list)`用于计算列表中所有数值的和,`average(list)`用于计算平均值。`sum(list)`通过遍历列表并累加每个元素实现求和;`average(list)`则调用`sum(list)`函数获取总和,然后除以列表...
recommend-type

使用FPGA实现复杂数学函数的计算

在FPGA中,我们可以通过重新整理方程,使其以温度为输出,电阻值为输入。通过这种方式,FPGA可以实时计算出温度值,满足高精度和低延迟的需求。 在实现这种功能时,FPGA工程师需要处理复杂的数学运算,例如上述的非...
recommend-type

python2练习题——编写函数,输入数字,判断是否是素数

在Python编程语言中,编写一个函数来判断输入的数字是否为素数是一项常见的练习任务。素数,也称为质数,是指大于1的自然数,它只能被1和它自身整除,没有其他自然数能整除它。理解素数的性质对学习数论和密码学等...
recommend-type

Terraform AWS ACM 59版本测试与实践

资源摘要信息:"本资源是关于Terraform在AWS上操作ACM(AWS Certificate Manager)的模块的测试版本。Terraform是一个开源的基础设施即代码(Infrastructure as Code,IaC)工具,它允许用户使用代码定义和部署云资源。AWS Certificate Manager(ACM)是亚马逊提供的一个服务,用于自动化申请、管理和部署SSL/TLS证书。在本资源中,我们特别关注的是Terraform的一个特定版本的AWS ACM模块的测试内容,版本号为59。 在AWS中部署和管理SSL/TLS证书是确保网站和应用程序安全通信的关键步骤。ACM服务可以免费管理这些证书,当与Terraform结合使用时,可以让开发者以声明性的方式自动化证书的获取和配置,这样可以大大简化证书管理流程,并保持与AWS基础设施的集成。 通过使用Terraform的AWS ACM模块,开发人员可以编写Terraform配置文件,通过简单的命令行指令就能申请、部署和续订SSL/TLS证书。这个模块可以实现以下功能: 1. 自动申请Let's Encrypt的免费证书或者导入现有的证书。 2. 将证书与AWS服务关联,如ELB(Elastic Load Balancing)、CloudFront和API Gateway等。 3. 管理证书的过期时间,自动续订证书以避免服务中断。 4. 在多区域部署中同步证书信息,确保全局服务的一致性。 测试版本59的资源意味着开发者可以验证这个版本是否满足了需求,是否存在任何的bug或不足之处,并且提供反馈。在这个版本中,开发者可以测试Terraform AWS ACM模块的稳定性和性能,确保在真实环境中部署前一切工作正常。测试内容可能包括以下几个方面: - 模块代码的语法和结构检查。 - 模块是否能够正确执行所有功能。 - 模块与AWS ACM服务的兼容性和集成。 - 模块部署后证书的获取、安装和续订的可靠性。 - 多区域部署的证书同步机制是否有效。 - 测试异常情况下的错误处理机制。 - 确保文档的准确性和完整性。 由于资源中没有提供具体的标签,我们无法从中获取关于测试的详细技术信息。同样,由于只提供了一个文件名“terraform-aws-acm-59-master”,无法得知该模块具体包含哪些文件和代码内容。然而,文件名暗示这是一个主版本(master),通常意味着这是主要的、稳定的分支,开发者可以在其上构建和测试他们的配置。 总之,terraform-aws-acm-59是Terraform的一个AWS ACM模块的测试版本,用于自动化管理和部署SSL/TLS证书。这个模块能够简化证书生命周期的管理,并提高与AWS服务的集成效率。测试工作主要是为了验证版本59的模块是否正常工作,并确保其在真实场景中可靠地执行预期功能。"
recommend-type

【HS1101湿敏电阻全面解析】:从基础知识到深度应用的完整指南

# 摘要 HS1101湿敏电阻作为湿度监测的重要元件,在环境监测、农业、工业等多个领域都有广泛应用。本文首先对湿敏电阻的基本概念及其工作原理进行了概述,接着详细探讨了其特性参数,如响应时间、灵敏度以及温度系数等,并针对HS1101型号提供了选型指南和实际应用场景分析。文章还深入讨论了HS1101湿敏电阻在电路设计中的要点和信号处理方法,提供了实践案例来展示其在智能湿度调节器和农业自动灌溉系统中的应用。最后,本文给出了湿敏电阻的维护保养技巧和故障排除方法,以帮助用户确保湿敏电阻的最佳性能和使用寿命。 # 关键字 湿敏电阻;HS1101;特性参数;电路设计;信号处理;环境监测;故障排除 参考资
recommend-type

MATLAB在一个图形窗口中创建一行两列的子图的代码

在MATLAB中,可以使用`subplot`函数在一个图形窗口中创建多个子图。对于一行两列的子图,可以使用以下代码: ```matlab % 创建第一个子图 subplot(1, 2, 1); plot([1, 2, 3], [4, 5, 6]); title('子图1'); % 创建第二个子图 subplot(1, 2, 2); plot([1, 2, 3], [6, 5, 4]); title('子图2'); ``` 这段代码的详细解释如下: 1. `subplot(1, 2, 1);`:创建一个1行2列的子图布局,并激活第一个子图。 2. `plot([1, 2, 3], [4,
recommend-type

Doks Hugo主题:打造安全快速的现代文档网站

资源摘要信息:"Doks是一个适用于Hugo的现代文档主题,旨在帮助用户构建安全、快速且对搜索引擎优化友好的文档网站。在短短1分钟内即可启动一个具有Doks特色的演示网站。以下是选择Doks的九个理由: 1. 安全意识:Doks默认提供高安全性的设置,支持在上线时获得A+的安全评分。用户还可以根据自己的需求轻松更改默认的安全标题。 2. 默认快速:Doks致力于打造速度,通过删除未使用的CSS,实施预取链接和图像延迟加载技术,在上线时自动达到100分的速度评价。这些优化有助于提升网站加载速度,提供更佳的用户体验。 3. SEO就绪:Doks内置了对结构化数据、开放图谱和Twitter卡的智能默认设置,以帮助网站更好地被搜索引擎发现和索引。用户也能根据自己的喜好对SEO设置进行调整。 4. 开发工具:Doks为开发人员提供了丰富的工具,包括代码检查功能,以确保样式、脚本和标记无错误。同时,还支持自动或手动修复常见问题,保障代码质量。 5. 引导框架:Doks利用Bootstrap框架来构建网站,使得网站不仅健壮、灵活而且直观易用。当然,如果用户有其他前端框架的需求,也可以轻松替换使用。 6. Netlify就绪:Doks为部署到Netlify提供了合理的默认配置。用户可以利用Netlify平台的便利性,轻松部署和维护自己的网站。 7. SCSS支持:在文档主题中提及了SCSS,这表明Doks支持使用SCSS作为样式表预处理器,允许更高级的CSS样式化和模块化设计。 8. 多语言支持:虽然没有在描述中明确提及,但Doks作为Hugo主题,通常具备多语言支持功能,这为构建国际化文档网站提供了便利。 9. 定制性和可扩展性:Doks通过其设计和功能的灵活性,允许用户根据自己的品牌和项目需求进行定制。这包括主题颜色、布局选项以及组件的添加或修改。 文件名称 'docs-main' 可能是Doks主题的核心文件,包含网站的主要内容和配置。这个文件对于设置和维护文档网站来说是至关重要的,因为它包含了网站的主要配置信息,如导航结构、品牌设置、SEO配置等。开发者在使用Doks主题时,将重点调整和优化这个文件以满足具体的项目需求。"
recommend-type

E9流程表单前端接口API(V5):前端与后端协同开发的黄金法则

![E9流程表单前端接口API(V5):前端与后端协同开发的黄金法则](https://opengraph.githubassets.com/4b7b246f81a756c8056ca0f80a5b46fad74e128b86dec7d59f1aeedb4b99c6a7/sotiriosmoustogiannis/process-json-format) # 摘要 本文全面介绍了E9流程表单API(V5)的开发与应用,阐述了协同开发理论基础和前端实践,并结合案例分析展示了API在企业流程自动化中的实战应用。文章首先概述了E9流程表单API(V5)的核心概念,然后详细探讨了前后端协同开发的重要