R语言回归模型FDR校正后计算95%CI和β值的代码是什么?
时间: 2024-02-01 22:15:35 浏览: 162
SL-ST 差速器3D模型 SL-ST 差速器
以下是一个简单的R代码,用于进行线性回归模型的FDR校正后计算95%CI和β值:
```r
# 加载数据
data <- read.csv("data.csv")
# 进行线性回归分析
fit <- lm(y ~ x1 + x2 + x3, data=data)
# 计算FDR校正后的p值
pvals <- summary(fit)$coefficients[,4]
fdr_pvals <- p.adjust(pvals, method="fdr")
# 计算95%CI和β值
confint <- confint(fit)
betas <- coef(fit)
# 输出结果
result <- data.frame(variable=names(betas), beta=betas, ci_lower=confint[,1], ci_upper=confint[,2], fdr_pval=fdr_pvals)
print(result)
```
其中,`data.csv`是包含自变量x1、x2、x3和因变量y的数据文件;`lm()`函数用于进行线性回归分析;`summary()`函数用于提取回归系数、标准误、t值和p值等信息;`p.adjust()`函数用于进行FDR校正;`confint()`函数用于计算95%CI;`coef()`函数用于提取回归系数。最终输出的结果包括变量名、回归系数、95%CI的下限和上限以及FDR校正后的p值。
阅读全文