flink根据以上数据,统计每个省份有多少家外卖店,并按降序排序
时间: 2024-01-15 08:05:38 浏览: 145
假设数据已经被读入Flink的DataStream中,并且每个元素是一个JSON字符串,包含了外卖店所在的省份信息。可以通过Flink的DataStream API来进行统计和排序。
以下是可能的代码实现:
```java
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.aggregation.AggregationFunction;
import org.apache.flink.streaming.api.functions.aggregation.SumFunction;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.json.JSONObject;
public class ProvinceCounter {
public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 读入数据流,假设每个元素是一个JSON字符串
DataStream<String> input = ...;
// 将每个JSON字符串解析为省份信息
DataStream<String> provinces = input.map(new MapFunction<String, String>() {
@Override
public String map(String value) throws Exception {
JSONObject json = new JSONObject(value);
return json.getString("province");
}
});
// 按省份分组,统计每个省份的外卖店数量
DataStream<ProvinceCount> counts = provinces
.keyBy(new KeySelector<String, String>() {
@Override
public String getKey(String value) throws Exception {
return value;
}
})
.timeWindow(Time.minutes(10)) // 滚动窗口,每10分钟统计一次
.aggregate(new SumFunction<String>() {
@Override
public String add(String value1, String value2) throws Exception {
return value1; // 外卖店数量不需要累加,只需要计数
}
}, new AggregationFunction<String, ProvinceCount>() {
@Override
public ProvinceCount createAccumulator() {
return new ProvinceCount("", 0);
}
@Override
public ProvinceCount add(String value, ProvinceCount accumulator) {
accumulator.province = value;
accumulator.count += 1;
return accumulator;
}
@Override
public ProvinceCount getResult(ProvinceCount accumulator) {
return accumulator;
}
@Override
public ProvinceCount merge(ProvinceCount a, ProvinceCount b) {
a.count += b.count;
return a;
}
});
// 按降序排序并输出结果
counts
.keyBy(new KeySelector<ProvinceCount, Integer>() {
@Override
public Integer getKey(ProvinceCount value) throws Exception {
return value.count;
}
})
.sortByDescending(new KeySelector<ProvinceCount, Integer>() {
@Override
public Integer getKey(ProvinceCount value) throws Exception {
return value.count;
}
})
.print();
env.execute("Province Counter");
}
// 用于表示每个省份的统计信息
public static class ProvinceCount {
public String province;
public int count;
public ProvinceCount(String province, int count) {
this.province = province;
this.count = count;
}
@Override
public String toString() {
return "ProvinceCount{" +
"province='" + province + '\'' +
", count=" + count +
'}';
}
}
}
```
本代码假设每个元素都是一个JSON字符串,其中包含了外卖店所在的省份信息。首先将每个JSON字符串解析为省份信息,然后按省份分组,并在滚动窗口内计数,统计每个省份的外卖店数量。最后按降序排序并输出结果。注意,Flink的DataStream API是流式处理的,因此需要使用窗口等操作将数据流转换为有限的数据集。
阅读全文