without pre-trained embedding图解
时间: 2023-08-26 19:05:42 浏览: 109
预训练的嵌入通常是使用大量文本数据训练的单词向量,可以用于初始化神经网络中的嵌入层。但是,如果没有预训练的嵌入,可以使用随机初始化的嵌入层。这个嵌入层会将每个单词映射到一个随机的向量,然后在模型训练过程中,这些向量会被优化以提高模型的性能。当然,由于随机初始化可能会导致模型过拟合或欠拟合,因此建议在训练过程中使用交叉验证来选择最好的嵌入维度和学习率等超参数。
相关问题
def load_pre_trained(): # load pre-trained embedding model embeddings_index = {} with open('D:\Desktop\深度学习\Embedding\sgns.sogou.word',encoding='utf-8') as f: _, embedding_dim = f.readline().split() for line in f: values = line.split() word = values[0] coefs = np.asarray(values[1:], dtype='float32') embeddings_index[word] = coefs print('Found %s 单词数量, 向量的维度信息 %s' % (len(embeddings_index), embedding_dim)) return embeddings_index
这段代码是用于加载预训练的词向量模型,其中使用的是搜狗新闻词向量数据集sgns.sogou.word。该数据集是一个预训练的中文词向量模型,包含了超过1.8亿个中文词汇及其对应的向量表示。代码中使用的是Python中的字典数据结构(embeddings_index),将每个单词和其对应的词向量存储在该字典中。最后,该函数返回了加载后的词向量模型。
Generative Pre-trained Transformer
The Generative Pre-trained Transformer (GPT) is a type of deep learning model used for natural language processing (NLP) tasks. It was developed by OpenAI and is based on the transformer architecture. GPT is pre-trained on massive amounts of text data and can generate human-like text, complete sentences, paragraphs, or even entire articles.
The GPT models are unsupervised and learn by predicting the next word or sequence of words based on the context of the previous words in the sentence. The pre-training process involves two main steps: unsupervised pre-training and supervised fine-tuning.
In the unsupervised pre-training step, the model is trained on a large corpus of text data using a task called language modeling. This involves predicting the likelihood of the next word in a sequence given the previous words. The model is trained to generate coherent and meaningful sentences by predicting the most likely next word based on the context of the previous words.
In the supervised fine-tuning step, the pre-trained model is fine-tuned on a specific task such as sentiment analysis, machine translation, or question answering. The fine-tuning process involves training the model on a smaller dataset with labeled examples.
The GPT models have achieved state-of-the-art performance on various NLP tasks, including language modeling, text generation, and question answering. They are widely used in industry and academia for various NLP applications.
阅读全文