import numpy as np import matplotlib.pyplot as plt import pandas as pd from apyori import apriori store_data = pd.read_csv('C:/Users/printf(II)/OneDrive/桌面/计算机应用/store_data.csv', header=None) store_data.head() records = [] for i in range(0, 7501): records.append([str(store_data.values[i,j]) for j in range(0, 20)]) association_rules = apriori(records, min_support=0.0045, min_confidence=0.2, min_lift=3, min_length=2) association_rules = list(association_rules) print(len(association_rules)) print(association_rules[0]) for item in association_rules: pair = item[0] items = [x for x in pair] print("Rule: " + items[0] + " -> " + items[1]) #second index of the inner list print("Support: " + str(item[1])) #third index of the list located at 0th #of the third index of the inner list print("Confidence: " + str(item[2][0][2])) print("Lift: " + str(item[2][0][3])) print("=====================================")解释上述代码每一段的含义
时间: 2024-04-22 19:21:48 浏览: 130
这段代码是一个简单的关联规则挖掘的实现,用于对超市销售数据进行分析。下面是每一段的含义:
import
语句:导入所需的库和模块。store_data = pd.read_csv('C:/Users/printf(II)/OneDrive/桌面/计算机应用/store_data.csv', header=None)
:读取存储在CSV文件中的数据集,并将其存储在store_data
变量中,将文件中的第一行作为数据的列名。store_data.head()
:显示数据集的前5行。records=[]
:创建一个空列表用于存储数据集中的所有记录。for i in range(0, 7501): records.append([str(store_data.values[i,j]) for j in range(0, 20)])
:遍历数据集中的每一行,将其转换为一个字符串列表,并将其添加到records
列表中。association_rules = apriori(records, min_support=0.0045, min_confidence=0.2, min_lift=3, min_length=2)
:使用apyori
库中的apriori
函数来生成关联规则。其中,min_support
指定最小支持度,min_confidence
指定最小置信度,min_lift
指定最小提升度,min_length
指定最小规则长度。association_rules = list(association_rules)
:将关联规则转换为列表。print(len(association_rules))
:打印关联规则的数量。print(association_rules[0])
:打印第一个关联规则。for item in association_rules: pair = item[0] items = [x for x in pair] print("Rule: " + items[0] + " -> " + items[1]) print("Support: " + str(item[1])) print("Confidence: " + str(item[2][0][2])) print("Lift: " + str(item[2][0][3])) print("=====================================")
:遍历所有关联规则,并输出它们的规则、支持度、置信度和提升度。此外,以一行等号作为分隔符。
阅读全文
相关推荐
















