筛选出会议时间小于70分钟的参会者 # 首先读取时间列和姓名列 df3['入会时间'] = pd.to_datetime(df['入会时间']) df3['退会时间'] = pd.to_datetime(df['退会时间']) # 计算参会时间 df3['time_diff'] = df3['退会时间'] - df3['入会时间'] df['time_diff_minutes'] = df3['time_diff'].dt.total_seconds() / 60 # 筛选出参会时间小于70分钟的参会者 absentees33 = df['time_diff_minutes'] < 70 # 统计旷课人数并绘制饼图 import matplotlib.pyplot as plt absentees_count33 = len(absentees33) presentees_count33 = len(df3) - absentees_count33 counts = [absentees_count33, presentees_count33] labels = ['旷课', '正常参加'] plt.pie(counts, labels=labels, autopct='%1.1f%%', startangle=90) plt.title('会议参加情况统计') plt.show()怎么修改代码
时间: 2023-08-21 14:01:48 浏览: 81
根据你提供的代码,需要将df改为df3,因为时间列和姓名列是在df3中定义的。并且需要在导入matplotlib.pyplot之前添加%matplotlib inline,以便在Jupyter Notebook中显示饼图。修改后的代码如下:
```
%matplotlib inline
import matplotlib.pyplot as plt
# 首先读取时间列和姓名列
df3['入会时间'] = pd.to_datetime(df3['入会时间'])
df3['退会时间'] = pd.to_datetime(df3['退会时间'])
# 计算参会时间
df3['time_diff'] = df3['退会时间'] - df3['入会时间']
df3['time_diff_minutes'] = df3['time_diff'].dt.total_seconds() / 60
# 筛选出参会时间小于70分钟的参会者
absentees33 = df3['time_diff_minutes'] < 70
# 统计旷课人数并绘制饼图
absentees_count33 = len(df3[absentees33])
presentees_count33 = len(df3) - absentees_count33
counts = [absentees_count33, presentees_count33]
labels = ['旷课', '正常参加']
plt.pie(counts, labels=labels, autopct='%1.1f%%', startangle=90)
plt.title('会议参加情况统计')
plt.show()
```
注意,为了计算旷课人数,需要对筛选出的结果进行len操作,因此需要将absentees33改为df3[absentees33]。另外,建议添加注释,以提高代码可读性。
阅读全文