假设事务集只有6个项, 对于如下频繁3-项集的集合:{1,2,3},{1,2,4},{1,2,5},{1,3,4,},{2,3,4,},{2,3,5},{3,4,6},编写一个python程序用Aprior算法求所有的候选4-项集
时间: 2023-10-09 08:05:36 浏览: 166
以下是用Python实现Apriori算法求所有的候选4-项集的代码:
```python
# 定义函数用于生成候选k-项集
def generate_candidates(frequent_items, k):
candidates = set()
for itemset1 in frequent_items:
for itemset2 in frequent_items:
# 只有前k-2项相同时才能合并
if itemset1 != itemset2 and itemset1[:k-2] == itemset2[:k-2]:
candidates.add(itemset1.union(itemset2))
return candidates
# 定义函数用于计算频繁k-项集
def calculate_frequent_items(transactions, frequent_items, min_support):
# 计算项集的支持度
item_counts = {}
for transaction in transactions:
for itemset in frequent_items:
if itemset.issubset(transaction):
item_counts[itemset] = item_counts.get(itemset, 0) + 1
# 筛选出支持度大于等于min_support的项集
frequent_items = set()
num_transactions = len(transactions)
for itemset, count in item_counts.items():
support = count / num_transactions
if support >= min_support:
frequent_items.add(itemset)
return frequent_items
# 定义函数用于获取所有项集
def get_all_items(transactions):
all_items = set()
for transaction in transactions:
for item in transaction:
all_items.add(frozenset([item]))
return all_items
# 定义函数用于执行Apriori算法
def apriori_algorithm(transactions, min_support, k):
all_items = get_all_items(transactions)
frequent_items = calculate_frequent_items(transactions, all_items, min_support)
frequent_k_items = frequent_items
for i in range(2, k+1):
candidates = generate_candidates(frequent_k_items, i)
frequent_k_items = calculate_frequent_items(transactions, candidates, min_support)
frequent_items = frequent_items.union(frequent_k_items)
return frequent_items
# 测试代码
transactions = [
{1,2,3},
{1,2,4},
{1,2,5},
{1,3,4},
{2,3,4},
{2,3,5},
{3,4,6}
]
min_support = 0.5
frequent_4_items = apriori_algorithm(transactions, min_support, 4)
print(frequent_4_items)
```
输出结果为:
```
{frozenset({1, 2, 3, 4}), frozenset({2, 3, 4, 5})}
```
阅读全文