编程实现HOG特征角点检测
时间: 2023-12-27 12:09:28 浏览: 75
HOG(Histogram of Oriented Gradient)特征角点检测是一种在计算机视觉领域广泛应用的方法,用于检测图像中的角点。下面是一个简单的Python实现,具体如下:
```python
import cv2
import numpy as np
def hog_corner_detection(img, blockSize=2, ksize=3, k=0.04, threshold=0.1):
# 计算x和y方向的Sobel导数
sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=ksize)
sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=ksize)
# 计算Ix^2, Iy^2, Ix*Iy
Ix2 = sobelx ** 2
Iy2 = sobely ** 2
Ixy = sobelx * sobely
# 在每个像素周围计算积分和
height, width = img.shape
Sx2 = np.zeros((height, width))
Sy2 = np.zeros((height, width))
Sxy = np.zeros((height, width))
for i in range(height):
for j in range(width):
if i == 0 or j == 0:
Sx2[i][j] = Ix2[i][j]
Sy2[i][j] = Iy2[i][j]
Sxy[i][j] = Ixy[i][j]
else:
Sx2[i][j] = Sx2[i-1][j] + Ix2[i][j]
Sy2[i][j] = Sy2[i][j-1] + Iy2[i][j]
Sxy[i][j] = Sxy[i-1][j] + Sxy[i][j-1] + Ixy[i][j] - Sxy[i-1][j-1]
# 计算每个像素的角点响应函数值
R = np.zeros((height, width))
for i in range(blockSize, height-blockSize):
for j in range(blockSize, width-blockSize):
# 计算每个块的Sx2, Sy2, Sxy
Sx2_block = Sx2[i-blockSize:i+1+blockSize, j-blockSize:j+1+blockSize]
Sy2_block = Sy2[i-blockSize:i+1+blockSize, j-blockSize:j+1+blockSize]
Sxy_block = Sxy[i-blockSize:i+1+blockSize, j-blockSize:j+1+blockSize]
# 计算块内角点响应函数值
det = Sx2_block * Sy2_block - Sxy_block ** 2
trace = Sx2_block + Sy2_block
R[i][j] = np.min(det) / (np.max(trace) + 1e-12)
# 选取响应函数值大于阈值的像素位置作为角点
corners = []
for i in range(height):
for j in range(width):
if R[i][j] > threshold:
corners.append((i, j))
return corners
```
其中,`img`是输入的灰度图像,`blockSize`是块的大小(默认为2),`ksize`是Sobel算子的大小(默认为3),`k`是常数因子(默认为0.04),`threshold`是响应函数值的阈值(默认为0.1)。函数返回一个列表,其中包含检测到的角点的位置。
阅读全文