树莓派基于tensorflow的数字识别
时间: 2023-06-01 22:05:22 浏览: 169
很高兴回答你的问题。树莓派可以基于TensorFlow进行数字识别。TensorFlow是一个强大的机器学习框架,支持在树莓派上运行。您可以使用TensorFlow训练一个数字识别模型,然后将其部署到树莓派上进行数字识别。
相关问题
树莓派基于tensorflow的数字识别具体实现代码
以下是基于TensorFlow的树莓派数字识别的示例代码:
```python
import time
import tensorflow as tf
from picamera.array import PiRGBArray
from picamera import PiCamera
import cv2
import numpy as np
# 加载模型
model = tf.keras.models.load_model('model.h5')
# 初始化摄像头
camera = PiCamera()
camera.resolution = (640, 480)
camera.framerate = 32
rawCapture = PiRGBArray(camera, size=(640, 480))
time.sleep(0.1)
# 循环读取摄像头数据
for frame in camera.capture_continuous(rawCapture, format="bgr", use_video_port=True):
# 获取图像数据并转换为灰度图像
image = frame.array
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 对图像进行二值化处理
_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
# 使用边缘检测算法检测数字
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for cnt in contours:
# 计算数字上下左右的坐标
x, y, w, h = cv2.boundingRect(cnt)
x1 = int(x - 0.1 * w)
y1 = int(y - 0.1 * h)
x2 = int(x + w + 0.1 * w)
y2 = int(y + h + 0.1 * h)
# 提取数字图像并缩放为28x28
digit = thresh[y1:y2, x1:x2]
digit = cv2.resize(digit, (28, 28))
# 将图像转换为模型可用的格式
digit = np.reshape(digit, (1, 28, 28, 1))
digit = digit.astype('float32')
digit /= 255
# 使用模型进行预测
prediction = model.predict(digit)
digit_class = np.argmax(prediction)
# 在图像上标注数字
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(image, str(digit_class), (x, y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
# 显示图像并清空缓冲区
cv2.imshow("Digits", image)
key = cv2.waitKey(1) & 0xFF
rawCapture.truncate(0)
# 如果按下q键则退出程序
if key == ord("q"):
break
cv2.destroyAllWindows()
```
阅读全文