nx^(n+2)/(n+2)求和,n从1到正无穷
时间: 2024-02-19 16:00:59 浏览: 186
这是一个无穷级数,可以使用求和公式来解决。首先,我们需要确保级数收敛。可以使用比值测试(ratio test)来证明它的收敛性:
lim(n→∞) |(nx^(n+3))/(n+3)(nx^(n+2))/(n+2)| = lim(n→∞) |x/(n+3)| = 0
因此,级数收敛。接下来,我们可以使用求和公式来计算级数:
∑(n=1,∞) nx^(n+2)/(n+2) = ∑(n=1,∞) x^(n+2) d/dx (n/(n+2))
= x^3 ∑(n=1,∞) d/dx (n/(n+2)) x^n
= x^3 ∑(n=1,∞) (2/(n+2)^2) x^n
最后,我们需要证明该级数的收敛半径为1。可以使用根值测试(root test)来证明:
lim(n→∞) |2/(n+2)^2|^(1/n) = lim(n→∞) 2^(1/n) / (1+2/n) = 1
因此,该级数的收敛半径为1。因为该级数在x=1处不收敛,所以它在(-1,1]内收敛,且在x=-1处发散。因此,该级数的和为:
∑(n=1,∞) nx^(n+2)/(n+2) = x^3 ∑(n=1,∞) (2/(n+2)^2) x^n,其中-1<x≤1。
相关问题
x^n/(n+1)!求和,n从0到正无穷
这是一个经典的级数,可以使用数学上的 e 的幂函数来求解。具体步骤如下:
首先,将 x^n/(n+1)! 重写为 x^(n+1)/(n+1)!, 然后将其代入 e^x 中,得到 e^x = ∑(n=0, ∞) x^n/n!,然后对等式两侧求导,得到 e^x = ∑(n=0, ∞) nx^(n-1)/n!。
接下来,将等式两侧乘以 x,得到 xe^x = ∑(n=0, ∞) x^n/n! * x = ∑(n=0, ∞) x^(n+1)/(n+1)!。
将前式减去后式,得到 xe^x - e^x = ∑(n=0, ∞) x^(n+1)/(n+1)! - ∑(n=0, ∞) x^n/n! = x^0/0! = 1。
因此,所求的级数为 ∑(n=0, ∞) x^n/(n+1)! = (xe^x - e^x)/(x-1) - 1/x。
希望这个答案对你有所帮助!
MATLAB中用while循环计算cosx=∑(-1)^nx^(2n)/(2*n)!
您可以用以下代码来计算cosx:
```
x = input("请输入x的值:");
n = 0;
cos_x = 0;
t = 1;
while t > 1e-8
t = (-1)^n * x^(2*n) / factorial(2*n);
cos_x = cos_x + t;
n = n + 1;
end
disp("cos(x)的值为:");
disp(cos_x);
```
在这段代码中,我们使用了while循环来计算cosx的值。其中,n表示当前项的下标,cos_x表示当前已计算出的cosx的值,t表示当前项的值。在每次循环中,我们首先计算出当前项t的值,然后将其加入到cos_x中。最后,我们通过不断更新t和n的值来进行循环,直到t的值小于某个阈值,即可结束循环并得到最终的cosx的值。
阅读全文
相关推荐

















