给定数据为sparse-view (SV) sinogram (sino_95_0.nii), 给出一个滤波反投影算法,python代码,输出尺寸为256*256
时间: 2023-06-14 07:05:59 浏览: 159
下面是一个简单的滤波反投影算法的Python代码,用于重建一个256x256的图像:
```python
import numpy as np
import matplotlib.pyplot as plt
import scipy.ndimage.filters as filters
import scipy.ndimage.interpolation as interpolation
import nibabel as nib
# load the sparse-view sinogram
sino = nib.load('sino_95_0.nii').get_fdata()
# set the reconstruction size
N = 256
# create the filter
filter = np.abs(np.fft.fftshift(np.fft.ifft(np.concatenate((np.ones((1,1)),np.sin(np.linspace(0,np.pi/2,N-1)).reshape(-1,1))).flatten()))).reshape(-1,1)
# perform backprojection
recon = np.zeros((N, N), dtype=np.float32)
angles = np.linspace(0, 180, sino.shape[1], endpoint=False)
for i, angle in enumerate(angles):
print(f"Processing angle {i+1}/{len(angles)}")
projection = sino[:, i]
projection = filters.convolve1d(projection, filter.flatten())
projection = interpolation.rotate(projection.reshape(1, -1), -angle, reshape=False, order=1, mode='nearest')
recon += projection
# display the reconstructed image
plt.imshow(recon, cmap='gray')
plt.show()
```
代码中使用了numpy、matplotlib、scipy和nibabel库。首先使用nibabel库加载sinogram数据,然后设置重建图像的大小为256x256。接下来,使用一个简单的滤波器创建一个滤波器,并使用该滤波器对每个角度的投影进行滤波。然后,使用scipy的旋转函数在每个角度上反投影投影数据,最后将所有的反投影结果相加得到重建图像。最后,我们使用matplotlib库显示重建的图像。
阅读全文