二维DBSCAN聚类算法matlab代码
时间: 2023-06-20 16:06:55 浏览: 140
下面是二维DBSCAN聚类算法的MATLAB代码实现。
```
function [C, idx] = dbscan(X,epsilon,MinPts)
% DBSCAN Clustering
%
% [C, idx] = dbscan(X,epsilon,MinPts) clusters the points in the n-by-p
% matrix X using DBSCAN algorithm, where each row represents a point in the
% p-dimensional space.
%
% Input:
% X: n-by-p data matrix.
% epsilon: the radius of the neighborhood.
% MinPts: the minimum number of points in the neighborhood.
%
% Output:
% C: cluster assignments for each point in X. 0 means noise.
% idx: indices of the core points.
%
% Reference:
% Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. 1996.
% A density-based algorithm for discovering clusters in large spatial databases
% with noise. In Proceedings of the 2nd International Conference on Knowledge
% Discovery and Data Mining (KDD'96), Evangelos Simoudis, Jiawei Han, and Usama
% Fayyad (Eds.). AAAI Press 226-231.
n = size(X,1);
% Calculate the distance matrix
D = squareform(pdist(X));
% Initialize the visited and noise flags
visited = false(n,1);
noise = false(n,1);
% Initialize the cluster assignments
C = zeros(n,1);
k = 0;
% Find the core points
for i = 1:n
% Find the neighbors within the radius
neighbors = find(D(i,:) <= epsilon);
% If there are less than MinPts neighbors, mark as noise
if numel(neighbors) < MinPts
noise(i) = true;
else
% Mark as core point
C(i) = k;
% Mark all neighbors as visited
visited(i) = true;
visited(neighbors) = true;
% Find the connected components
while ~isempty(neighbors)
j = neighbors(1);
neighbors(1) = [];
% Add j to the current cluster
C(j) = k;
% If j is a core point, add its neighbors to the list
if numel(find(D(j,:) <= epsilon)) >= MinPts
neighbors = [neighbors find(D(j,:) <= epsilon)];
end
% Mark j as visited
visited(j) = true;
end
% Move to the next cluster
k = k + 1;
end
end
% Find the border points
for i = 1:n
if ~noise(i) && ~visited(i)
% Find the neighbors within the radius
neighbors = find(D(i,:) <= epsilon);
% If there is a core point in the neighborhood, assign to that cluster
for j = neighbors
if C(j) > 0
C(i) = C(j);
break;
end
end
end
end
% Output the indices of the core points
idx = find(~noise);
end
```
在代码中,输入参数X是数据矩阵,epsilon是邻域半径,MinPts是邻域最小点数。输出参数C是数据点的簇分配,0表示噪声点。idx是核心点的索引。
阅读全文