q-learning算法路径规划matlab代码
时间: 2023-08-25 11:07:58 浏览: 144
Q-Learning路径规划算法附matlab代码.zip
以下是一个简单的Q-learning算法的路径规划Matlab代码示例:
```matlab
% 初始状态
start_state = 1;
% 终止状态
goal_state = 6;
% 状态转移矩阵
R = [0 -1 -1 0 0 0;
0 0 -1 -1 0 -1;
0 -1 0 -1 -1 -1;
0 -1 -1 0 -1 -1;
-1 0 -1 -1 0 -1;
-1 -1 0 0 -1 0];
% 转移概率矩阵
T = [0.5 0.5 0 0 0 0;
0 0.5 0.5 0 0 0;
0 0 0.5 0.5 0 0;
0 0 0 0.5 0.5 0;
0 0 0 0 0.5 0.5;
0 0 0 0 0 1];
% Q-table初始化
Q = zeros(size(T));
% 超参数设定
learning_rate = 0.8;
discount_factor = 0.95;
num_episodes = 1000;
% Q-learning算法
for episode = 1:num_episodes
% 初始化当前状态
current_state = start_state;
while current_state ~= goal_state
% 根据epsilon-greedy策略选择动作
if rand < 0.1
action = randi([1 size(T, 2)]);
else
[~, action] = max(Q(current_state, :));
end
% 执行动作并转移到下一个状态
next_state = randsample(1:size(T, 1), 1, true, T(current_state, :));
% 更新Q-table
Q(current_state, action) = Q(current_state, action) + learning_rate * (R(current_state, next_state) + discount_factor * max(Q(next_state, :)) - Q(current_state, action));
% 更新当前状态
current_state = next_state;
end
end
% 输出最优路径
path = start_state;
current_state = start_state;
while current_state ~= goal_state
[~, action] = max(Q(current_state, :));
current_state = action;
path = [path current_state];
end
disp(path);
```
该代码中,我们使用一个6状态的示例环境,其中0表示无效状态,-1表示可行状态,1表示目标状态。状态转移矩阵R和转移概率矩阵T也在代码中定义。在Q-table初始化后,我们使用Q-learning算法进行训练。最后,我们输出从起始状态到目标状态的最优路径。
请注意,此代码仅作为示例,您需要根据您的具体问题进行修改。
阅读全文