matlab实现:C是空间城市三维坐标,D是距离矩阵,遗传算法解决TSP问题,要求迭代绘制每一次的最优路径,注意坐标是三维的
时间: 2024-03-21 22:42:54 浏览: 56
好的,这是一个比较典型的TSP问题,使用遗传算法可以得到较优的解。下面是MATLAB实现的代码:
```matlab
% 定义城市坐标
C = [1 2 3; 4 5 6; 7 8 9; 10 11 12; 13 14 15];
% 计算距离矩阵
n = size(C, 1); % 城市数量
D = zeros(n, n);
for i = 1:n
for j = 1:n
D(i, j) = norm(C(i,:) - C(j,:)); % 计算欧几里得距离
end
end
% 设置遗传算法参数
popSize = 50; % 种群大小
numGen = 100; % 迭代次数
numElite = 2; % 精英个体数量
mutProb = 0.01; % 变异概率
% 初始化种群
pop = zeros(popSize, n);
for i = 1:popSize
pop(i,:) = randperm(n);
end
% 计算适应度
fitness = zeros(popSize, 1);
for i = 1:popSize
fitness(i) = calcFitness(pop(i,:), D);
end
% 记录每一代的最优解
bestFitness = zeros(numGen, 1);
bestPath = zeros(numGen, n);
[bestFitness(1), idx] = min(fitness);
bestPath(1,:) = pop(idx,:);
% 迭代
for gen = 2:numGen
% 选择
parents = selection(pop, fitness, numElite);
% 交叉
offspring = crossover(parents, popSize);
% 变异
offspring = mutation(offspring, mutProb);
% 计算适应度
fitness = zeros(popSize, 1);
for i = 1:popSize
fitness(i) = calcFitness(offspring(i,:), D);
end
% 合并种群
pop = [parents; offspring];
fitness = [fitness; fitness];
% 保留精英个体
[fitness, idx] = sort(fitness);
pop = pop(idx,:);
pop = pop(1:popSize,:);
fitness = fitness(1:popSize);
% 记录最优解
[bestFitness(gen), idx] = min(fitness);
bestPath(gen,:) = pop(idx,:);
% 绘制最优路径
plot3(C(:,1), C(:,2), C(:,3), 'ro');
hold on;
plot3(C([bestPath(gen,:) bestPath(gen,1)],1), C([bestPath(gen,:) bestPath(gen,1)],2), C([bestPath(gen,:) bestPath(gen,1)],3), 'b--');
hold off;
drawnow;
end
% 绘制最优路径
plot3(C(:,1), C(:,2), C(:,3), 'ro');
hold on;
plot3(C([bestPath(end,:) bestPath(end,1)],1), C([bestPath(end,:) bestPath(end,1)],2), C([bestPath(end,:) bestPath(end,1)],3), 'b--');
hold off;
% 计算路径长度
function f = calcFitness(path, D)
f = 0;
n = length(path);
for i = 1:n-1
f = f + D(path(i), path(i+1));
end
f = f + D(path(n), path(1));
end
% 选择
function parents = selection(pop, fitness, numElite)
[~, idx] = sort(fitness);
parents = pop(idx(1:numElite),:);
end
% 交叉
function offspring = crossover(parents, popSize)
n = size(parents, 1);
offspring = zeros(popSize-n, size(parents, 2));
for i = 1:popSize-n
% 随机选择两个父代个体
idx1 = randi(n);
idx2 = randi(n);
while idx2 == idx1
idx2 = randi(n);
end
parent1 = parents(idx1,:);
parent2 = parents(idx2,:);
% 随机选择交叉点
pt = randi(length(parent1)-1);
% 交叉
offspring(i,:) = [parent1(1:pt) parent2(pt+1:end)];
end
end
% 变异
function offspring = mutation(pop, mutProb)
offspring = pop;
for i = 1:size(offspring, 1)
if rand < mutProb
% 随机选择两个位置
idx1 = randi(size(offspring, 2));
idx2 = randi(size(offspring, 2));
while idx2 == idx1
idx2 = randi(size(offspring, 2));
end
% 交换两个位置的值
temp = offspring(i,idx1);
offspring(i,idx1) = offspring(i,idx2);
offspring(i,idx2) = temp;
end
end
end
```
以上代码使用了三维坐标来定义城市,实现了迭代绘制每一次的最优路径。在主函数中,首先计算了城市之间的
阅读全文