train_X = vectorize_documents(train_documents) test_X = vectorize_documents(test_documents) # 训练朴素贝叶斯分类器 classifiers = [] for i in range(5): y = [1 if label == i else 0 for label in train_labels] clf = train_classifier(train_X, y) classifiers.append(clf)
时间: 2023-06-20 09:04:51 浏览: 87
已存在训练模型,用test进行测试输出分类结果,只需修改相应路径即可
这段代码实现了一个朴素贝叶斯分类器的训练过程。其中,train_X 是训练数据的特征矩阵,test_X 是测试数据的特征矩阵,train_labels 是训练数据的类别标签。
具体来说,该代码将数据集按照类别分为 5 个部分,分别训练 5 个二分类器,每个二分类器用于将某个类别与其他类别区分开来。训练过程中,将训练数据的类别标签转化为 0/1 的形式,其中 1 表示该样本属于当前正在训练的类别,0 表示不属于。然后,使用该类别的训练数据和标签来训练一个朴素贝叶斯分类器 clf,并将其存储在 classifiers 列表中。最终,可以使用这些分类器对测试数据进行分类,将每个样本分别输入到 5 个分类器中,选择得分最高的分类器的类别作为该样本的预测类别。
阅读全文