matlab 点云分割算法

时间: 2023-09-04 19:06:40 浏览: 32
Matlab中可以使用PCL(Point Cloud Library)库来实现点云分割。PCL是一个开源的点云处理库,提供了各种点云处理的算法,包括滤波、分割、配准等。 以下是一个简单的点云分割示例: ```matlab % 读取点云数据 ptCloud = pcread('filename.ply'); % 创建分割对象 seg = pcsegdist(ptCloud, 0.01); % 设置分割参数 seg.MinDistance = 0.05; seg.MaxDistance = 0.2; % 执行分割 indices = find(seg); % 可视化分割结果 ptCloudSeg = select(ptCloud, indices); pcshow(ptCloudSeg); ``` 在上面的示例中,首先读取一个点云数据文件,然后创建一个分割对象,并设置分割参数。最后执行分割操作,并将分割结果可视化。具体分割方法可以根据实际需要选择不同的分割算法,比如基于平面模型的分割、基于欧式聚类的分割等。
相关问题

matlab点云分割算法

matlab点云分割算法是基于法向量的方法。首先,通过计算每个点的法向量,将点云数据分成若干个平面。这可以通过计算每个点与相邻点的法向量之间的夹角来实现。如果夹角小于一个设定的阈值,则认为这两个点属于同一个平面。接下来,对每个平面进行聚类,得到每个物体或区域的点云集合。这可以使用k-means聚类算法,根据每个点所属的平面标签,将点云数据分成若干个物体或区域的点云集合。 以下是

matlab树木点云分割算法

MATLAB提供多种树木点云分割算法,其中一种常用的算法是基于形态学的方法。这种方法通过对点云进行形态学操作,例如开运算和闭运算,来分离树木点云和地面点云。具体步骤如下: 1. 将点云数据导入MATLAB,并将其表示为一个N×3的矩阵,其中每一行代表一个点的三维坐标。 2. 首先,利用地面分割算法(如RANSAC或基于几何形状的算法)提取地面点云,得到地面模型。 3. 对于剩余的非地面点云,进行形态学开运算,以去除小的噪声点。 4. 然后,进行形态学闭运算,填充树木点云的空洞。 5. 对于闭运算后的点云,可以根据树木的形状进行进一步的处理,例如使用形状特征提取算法或聚类算法,以提取和分割树木点云。

相关推荐

### 回答1: Matlab是一种常用的科学计算软件,可以用于进行点云的语义分割。 点云是由大量的点组成的三维数据,包含了物体的位置和形状等信息。点云语义分割是将点云中的点按照它们所属的语义类别进行分类的过程。 在Matlab中进行点云语义分割,可以使用一些现有的工具和技术。常用的方法包括基于深度学习的语义分割网络,如U-Net、PointNet和PointNet++等。这些网络可以通过训练样本来学习点云中不同物体的语义信息,并进行分类。 通过Matlab中的图像处理和计算机视觉工具箱,可以方便地导入和处理点云数据。可以使用Matlab中提供的函数和算法来预处理点云数据,如点云滤波、去噪、特征提取等。同时,还可以使用Matlab中的可视化工具来可视化点云的语义分割结果,以便进行分析和评估。 总之,Matlab提供了丰富的工具和函数,可以用于进行点云的语义分割。它可以用于导入、处理、分析和可视化点云数据,并使用深度学习等技术进行语义分割。在实际应用中,可以根据具体的需求选择适合的方法和技术,以实现准确和高效的点云语义分割。 ### 回答2: MATLAB点云语义分割是一种利用MATLAB软件进行点云数据处理和分析的方法,旨在对点云数据进行语义分割,即根据不同点的语义属性将点云进行分类。 点云数据是由大量的三维点构成的集合,常用于描述物体的形状、位置和表面信息。而点云语义分割则是将这些点按照它们的语义或类别进行分割,比如将点云分为车辆、行人、建筑等。 在MATLAB中实现点云语义分割通常包括以下步骤。首先,通过传感器(如激光雷达)获取点云数据,并将其导入MATLAB环境中进行预处理。这可以包括去除杂乱的数据、去噪、滤波等。 接下来,使用机器学习或深度学习算法,训练语义分割模型。例如,可以使用支持向量机(SVM)、随机森林(Random Forest)或卷积神经网络(CNN)等经典算法,以及它们的MATLAB实现。 在训练完模型后,可以将其应用于点云数据上,对每个点进行分类。这可以通过针对每个点提取特征并使用已训练好的模型进行预测来实现。 最后,对于分割结果,可以进行可视化呈现,以便进一步分析和理解点云数据。在MATLAB中,可以使用各种绘图和可视化函数来展示分割后的结果。 综上所述,MATLAB点云语义分割是一种利用MATLAB进行点云数据处理和分析的技术,通过训练模型对点云中的每个点进行语义分类,以实现对点云数据的语义分割和可视化呈现。 ### 回答3: Matlab点云语义分割是指使用Matlab软件进行点云数据的语义分割任务。点云是由大量的点组成的三维数据,它们可以代表物体的形状、位置和颜色等信息。 在进行点云语义分割时,首先需要使用Matlab对点云数据进行预处理,例如去除无效点、对点云进行滤波等操作,以去除噪声和异常点。 接下来,可以使用Matlab提供的各种点云处理工具,如点云配准、点云分割等方法进行进一步处理。其中,点云分割是点云语义分割的核心任务。 在Matlab中,可以使用各种点云分割算法来实现语义分割。常见的算法包括基于聚类的方法(如基于欧氏距离的K-means算法)和基于特征的方法(如法线方向估计、曲率估计等)。这些算法可以通过Matlab中的函数和工具箱来实现。 在进行点云语义分割时,还需要使用训练好的模型来进行分类。可以使用深度学习方法(如卷积神经网络)对点云数据进行训练,得到分类模型。然后,可以利用Matlab中的深度学习工具箱加载模型并进行预测分类。 最后,可以使用Matlab中的可视化工具将点云语义分割的结果进行可视化展示,以便进一步分析和应用。 总之,Matlab点云语义分割是一种利用Matlab软件进行点云数据处理、算法实现和模型训练的方法,可以用于对点云数据进行语义分割任务,提取出不同物体的语义信息。
区域生长算法是一种点云分割方法,它通过将相邻的点聚合成区域来分割点云。以下是一个基于MATLAB的点云分割区域生长算法的实现。 首先,我们需要读取点云数据。在本例中,我们将使用一个简单的点云数据集,该数据集包含一个球形物体和一个立方体物体。 % 读取点云数据 pc = pcread('example.pcd'); 接下来,我们将定义一些区域生长算法的参数。这些参数包括: - seedPoint:种子点,用于启动区域生长算法。 - distanceThreshold:距离阈值,用于确定哪些点应该被聚合成一个区域。 - normalThreshold:法向量阈值,用于确定哪些点应该被聚合成一个区域。 - maxNumPoints:最大点数,用于限制每个区域的大小。 % 定义区域生长算法参数 seedPoint = [0, 0, 0]; distanceThreshold = 0.01; normalThreshold = 0.8; maxNumPoints = 1000; 接下来,我们将使用 pcsegdist 函数来执行区域生长算法。该函数需要传入点云数据、种子点、距离阈值、法向量阈值和最大点数等参数。该函数将返回一个包含每个点所属区域编号的向量。 % 执行区域生长算法 labels = pcsegdist(pc, seedPoint, distanceThreshold, normalThreshold, maxNumPoints); 最后,我们将使用 pcshow 函数来可视化点云数据和分割结果。我们将使用不同的颜色来表示不同的区域。 % 可视化点云数据和分割结果 figure; pcshow(pc.Location, labels); title('Point Cloud Segmentation Using Region Growing Algorithm'); xlabel('X'); ylabel('Y'); zlabel('Z');
对于点云分割的代码,可以参考使用Matlab进行实现。如引用所述,可以借鉴二维图像的区域生长分割方法。具体步骤如下: 1. 确定点云分块的方向,可以选择按照x、y、z轴方向还是其它方位进行分割。在这里,我们可以简化问题,选择直接根据z轴方向将点云进行分割。 2. 手动指定一个初始种子点。可以根据应用需求,在Matlab中编写代码,手动选择一个点作为分割的起始点。 3. 利用区域生长分割的方法,根据选择的初始种子点,将点云进行分块。可以使用Matlab提供的相关函数和算法实现。 需要注意的是,这只是一种简单的点云分割方法,具体的实现还需要根据实际情况和需求进行调整和优化。使用Matlab编写代码可以更方便地进行实验和验证。123 #### 引用[.reference_title] - *1* *3* [[MATLAB] 点云分块/分层](https://blog.csdn.net/weixin_45012886/article/details/117186596)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [【2019-12-29-挖坑】matlab实现区域生长的点云分割](https://blog.csdn.net/suyunzzz/article/details/103750170)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
### 回答1: MATLAB点云工具箱是一个用于处理、分析和可视化点云数据的工具包。它为用户提供了一套丰富的功能,可以进行点云的读取、处理、滤波、配准、分割等操作。 首先,点云工具箱允许用户从激光扫描仪、摄像机等设备中导入点云数据。用户可以通过直接读取点云文件或使用传感器接口来获取点云数据。通过这个工具箱,用户可以轻松地获取各种类型的点云数据。 其次,点云工具箱提供了多种点云处理算法,包括滤波、配准、分割等。对于不规则、噪声干扰较大的点云数据,用户可以使用滤波算法对其进行平滑处理,提高数据的质量。此外,用户还可以将多个点云数据进行配准操作,实现不同坐标系下的点云数据的对齐和融合。在进行某些特定任务时,用户可以通过分割算法将点云数据进行分块,提取感兴趣的区域。 再次,点云工具箱还提供了一系列的可视化函数,用于显示和分析点云数据。用户可以通过三维点云显示函数将点云数据可视化为三维模型,以便更直观地观察和分析数据。同时,该工具箱还提供了灰度、彩色、深度图像的显示函数,方便用户查看点云数据的各个方面。 总之,MATLAB点云工具箱是一个功能强大、便捷易用的工具包,可用于点云数据的处理、分析和可视化。无论是在工程领域还是研究领域,该工具箱都为用户提供了丰富的功能,可以大大提高点云数据处理的效率和准确性。 ### 回答2: MATLAB点云工具箱是一个用于处理和分析三维点云数据的功能强大的工具包。它提供了一系列算法和函数,可以方便地进行点云的操作、可视化和模型拟合等任务。 首先,点云工具箱提供了读取和保存点云数据的函数,支持多种点云文件格式,如PLY、PCD等。这可以方便地从各种设备或软件中导入和导出点云数据。 其次,点云工具箱包含了一系列对点云数据进行处理和分析的函数。例如,可以进行点云的滤波、降采样、变换和配准等操作。通过这些函数,可以对原始点云数据进行预处理,提高数据质量和准确性。 此外,点云工具箱还提供了一些用于点云可视化的函数和工具。可以将点云数据以各种方式呈现出来,比如散点图、网格图和体素图等。这样,我们可以更直观地观察点云的形状、结构和特征。 在模型拟合方面,点云工具箱提供了一些常用的算法,比如最小二乘法和RANSAC。这些算法可以用来估计点云数据的参数模型,如平面、曲面和直线等。通过模型拟合,可以对点云数据进行更进一步的分析和应用。 总之,MATLAB点云工具箱是一个功能丰富的工具包,可以方便地处理和分析三维点云数据。它提供了丰富的函数和算法,支持点云的读取、处理、可视化和模型拟合等任务,为点云数据的研究和应用提供了便利。
### 回答1: 点云轮廓提取是一种基于点云数据的轮廓分割方法,主要用于三维模型的识别、测量、建模和应用等方面。matlab是一种高级数学软件,同时也是点云处理和分析的重要工具之一。 在matlab中进行点云轮廓提取需要使用相关的工具箱或库,例如Point Cloud Library (PCL)或MATLAB Computer Vision Toolbox等。使用这些工具可以通过读取点云数据文件,对点云进行预处理、集群化、分割等操作,以获得需要的轮廓、边缘或物体等信息。 在实际操作过程中,可以使用matlab的相关函数或控件来实现点云数据的可视化、交互和处理等操作,如PointCloud、pcshow、pcmerge、pcfitplane等。在轮廓提取的过程中,可以基于深度学习、机器学习或传统算法等方法来进行特征提取、分类、聚类和分割等操作,从而提高提取的精度和效率。 总的来说,在matlab中进行点云轮廓提取需要有相关的知识和技能,同时需要根据具体应用场景和数据特点选择合适的算法和工具,以实现优质的点云数据处理和应用。 ### 回答2: Matlab点云轮廓提取是一种用于从点云数据中提取对象轮廓的技术。点云数据一般是由3D扫描设备或三维建模软件生成的大量点的集合。点云轮廓提取可以有效的提取出点云数据中的边界信息,进而用于建立物体模型、对象识别等应用。 点云轮廓提取主要分为两种方法,一种是基于体素的方法,另一种是基于点云的方法。基于体素的方法是将点云数据离散化为一系列立方体,通过分析每个立方体中的点的分布情况来进行轮廓提取。基于点云的方法则是直接对点云数据进行处理,通过对点云中的点之间的关系和密度进行计算,提取出对象边缘轮廓。 在Matlab中可以通过调用点云处理工具箱实现点云轮廓提取。该工具箱提供了各种算法,包括基于基础几何和高级统计分析的方法。其中,常用的算法包括region growing、ransac和分水岭算法等。这些算法的主要作用是通过点云数据中点之间的距离信息,得到对象表面精确的边界轮廓。 点云轮廓提取有许多应用场景。例如在自动驾驶、人机交互、智能机器视觉等领域中非常重要。例如,点云轮廓提取技术可以用于自动驾驶中的障碍物检测、人机交互中的手势识别以及智能机器视觉中的物体识别。总之,Matlab点云轮廓提取是一项非常有价值的技术,有着广泛的应用前景。 ### 回答3: 点云轮廓提取,是指从三维点云数据中提取出边缘轮廓信息的过程。在实际应用中,点云轮廓提取是非常重要的,它可以在三维建模、物体识别和机器人导航等领域中被广泛应用。而MATLAB作为一款专业的科学计算软件,也提供了丰富的工具和算法来处理点云数据,并实现点云轮廓提取算法。 MATLAB中常用的点云轮廓提取方法主要包括投影法、几何法、局部曲率法等。其中,投影法是一种比较简单且常用的方法,它可以将三维点云数据投影到二维平面上,然后通过轮廓提取算法得到点云的轮廓信息。在MATLAB中,可以使用pcproj函数将点云数据投影到平面上,然后使用boundary函数进行轮廓提取。 几何法是一种基于点云数据的几何特征进行分析的方法,它可以通过计算点云表面的法向量、曲率等特征,来得到点云的轮廓信息。在MATLAB中,可以使用pcnormals函数计算点云表面的法向量,然后通过计算法向量差异和曲率等指标,来得到点云的轮廓信息。 局部曲率法是一种基于点云数据的局部特征进行分析的方法,它可以通过计算局部曲率值和曲率变化率等指标,来得到点云的轮廓信息。在MATLAB中,可以使用pclfit函数计算点云的曲率信息,然后通过计算曲率变化率和曲率值进行轮廓提取。 除了以上几种常用方法外,MATLAB还提供了其他一些点云轮廓提取算法,如基于深度学习的方法、基于随机采样一致性算法等。这些算法都能实现点云轮廓提取,并在实际应用中有广泛的应用。 综上所述,MATLAB可以通过多种算法来实现点云轮廓提取,为三维建模、物体识别等领域的研究提供了强有力的工具。同时,在使用MATLAB进行点云轮廓提取时,需要根据具体需求选择适合的算法,以获得更好的效果。

最新推荐

超声波雷达驱动(Elmos524.03&Elmos524.09)

超声波雷达驱动(Elmos524.03&Elmos524.09)

ROSE: 亚马逊产品搜索的强大缓存

89→ROSE:用于亚马逊产品搜索的强大缓存Chen Luo,Vihan Lakshman,Anshumali Shrivastava,Tianyu Cao,Sreyashi Nag,Rahul Goutam,Hanqing Lu,Yiwei Song,Bing Yin亚马逊搜索美国加利福尼亚州帕洛阿尔托摘要像Amazon Search这样的产品搜索引擎通常使用缓存来改善客户用户体验;缓存可以改善系统的延迟和搜索质量。但是,随着搜索流量的增加,高速缓存不断增长的大小可能会降低整体系统性能。此外,在现实世界的产品搜索查询中广泛存在的拼写错误、拼写错误和冗余会导致不必要的缓存未命中,从而降低缓存 在本文中,我们介绍了ROSE,一个RO布S t缓存E,一个系统,是宽容的拼写错误和错别字,同时保留传统的缓存查找成本。ROSE的核心组件是一个随机的客户查询ROSE查询重写大多数交通很少流量30X倍玫瑰深度学习模型客户查询ROSE缩短响应时间散列模式,使ROSE能够索引和检

java中mysql的update

Java中MySQL的update可以通过JDBC实现。具体步骤如下: 1. 导入JDBC驱动包,连接MySQL数据库。 2. 创建Statement对象。 3. 编写SQL语句,使用update关键字更新表中的数据。 4. 执行SQL语句,更新数据。 5. 关闭Statement对象和数据库连接。 以下是一个Java程序示例,用于更新MySQL表中的数据: ```java import java.sql.*; public class UpdateExample { public static void main(String[] args) { String

JavaFX教程-UI控件

JavaFX教程——UI控件包括:标签、按钮、复选框、选择框、文本字段、密码字段、选择器等

社交网络中的信息完整性保护

141社交网络中的信息完整性保护摘要路易斯·加西亚-普埃约Facebook美国门洛帕克lgp@fb.com贝尔纳多·桑塔纳·施瓦茨Facebook美国门洛帕克bsantana@fb.com萨曼莎·格思里Facebook美国门洛帕克samguthrie@fb.com徐宝轩Facebook美国门洛帕克baoxuanxu@fb.com信息渠道。这些网站促进了分发,Facebook和Twitter等社交媒体平台在过去十年中受益于大规模采用,反过来又助长了传播有害内容的可能性,包括虚假和误导性信息。这些内容中的一些通过用户操作(例如共享)获得大规模分发,以至于内容移除或分发减少并不总是阻止其病毒式传播。同时,社交媒体平台实施解决方案以保持其完整性的努力通常是不透明的,导致用户不知道网站上发生的任何完整性干预。在本文中,我们提出了在Facebook News Feed中的内容共享操作中添加现在可见的摩擦机制的基本原理,其设计和实现挑战,以�

fluent-ffmpeg转流jsmpeg

以下是使用fluent-ffmpeg和jsmpeg将rtsp流转换为websocket流的示例代码: ```javascript const http = require('http'); const WebSocket = require('ws'); const ffmpeg = require('fluent-ffmpeg'); const server = http.createServer(); const wss = new WebSocket.Server({ server }); wss.on('connection', (ws) => { const ffmpegS

Python单选题库(2).docx

Python单选题库(2) Python单选题库(2)全文共19页,当前为第1页。Python单选题库(2)全文共19页,当前为第1页。Python单选题库 Python单选题库(2)全文共19页,当前为第1页。 Python单选题库(2)全文共19页,当前为第1页。 Python单选题库 一、python语法基础 1、Python 3.x 版本的保留字总数是 A.27 B.29 C.33 D.16 2.以下选项中,不是Python 语言保留字的是 A while B pass C do D except 3.关于Python 程序格式框架,以下选项中描述错误的是 A Python 语言不采用严格的"缩进"来表明程序的格式框架 B Python 单层缩进代码属于之前最邻近的一行非缩进代码,多层缩进代码根据缩进关系决定所属范围 C Python 语言的缩进可以采用Tab 键实现 D 判断、循环、函数等语法形式能够通过缩进包含一批Python 代码,进而表达对应的语义 4.下列选项中不符合Python语言变量命名规则的是 A TempStr B I C 3_1 D _AI 5.以下选项中

利用脑信号提高阅读理解的信息检索模型探索

380∗→利用脑信号更好地理解人类阅读理解叶紫怡1、谢晓辉1、刘益群1、王志宏1、陈雪松1、张敏1、马少平11北京国家研究中心人工智能研究所计算机科学与技术系清华大学信息科学与技术学院,中国北京yeziyi1998@gmail.com,xiexh_thu@163.com,yiqunliu@tsinghua.edu.cn,wangzhh629@mail.tsinghua.edu.cn,,chenxuesong1128@163.com,z-m@tsinghua.edu.cn, msp@tsinghua.edu.cn摘要阅读理解是一个复杂的认知过程,涉及到人脑的多种活动。然而,人们对阅读理解过程中大脑的活动以及这些认知活动如何影响信息提取过程知之甚少此外,随着脑成像技术(如脑电图(EEG))的进步,可以几乎实时地收集大脑信号,并探索是否可以将其用作反馈,以促进信息获取性能。在本文中,我们精心设计了一个基于实验室的用户研究,以调查在阅读理解过程中的大脑活动。我们的研究结果表明,不同类型�

结构体指针强制类型转换是什么意思?

结构体指针强制类型转换是指将一个结构体指针强制转换为另一个结构体指针类型,以便对其进行操作。这种转换可能会导致一些错误,因为结构体的数据成员在内存中的重新分配可能会导致内存对齐问题。下面是一个示例代码,演示了如何进行结构体指针强制类型转换: ```c struct person { char name[20]; int age; }; struct student { char name[20]; int age; int grade; }; int main() { struct person p = {"Tom", 20}; s

局域网网络安全设计.doc

xx学院 计算机工程技术学院(软件学院) 毕 业 设 计 " " "题目: 局域网网络安全设计 " "专业: " " "学生姓名: "学号: " "大一班级: "大三班级: " "指导教师姓名: "职称: " 2017年 3月 25日 xx学院计算机工程技术学院 计算机网络技术 专业毕业设计任务书 填表日期: 2017 年 3 月 25 日 "项目名 "局域网网络安全设计 " "学生 " "学生号 " "联系电" " "姓名 " " " "话 " " "指导 " "单位 " "联系电" " "教师 " " " "话 " " "项目 " " "简介 "本项目模拟某企业的局域网内部网络,运用一些网络技术,加上网络安" " "全设备,从而使该企业的局域网网络处于相对安全的局面。 " "设 "目标: " "计 "模拟某企业的局域网内部网络,实现企业局域网内部网络的安全,防止" "任 "非法设备接入内网并将其阻断 " "务 "配置防火墙的安全策略,防止来自外部网络的侵害 " "、 "3.允许内部主机能够访问外网 " "目 "计划: " "标 "确定设计的选题,明确具体的研究方向 " "与 "查阅相关的技术文献,并通过实验检验选题的可行性 " "计 "起草设计论文的主要内容,撰写设计文档 " "划 "初稿交由指导老师审阅 " " "修改完善设计文档,完成设计任务 " "指导教师评语: " " " " " "指导教师评分: " " " "指导教师签名: " "年 月 日 " "答辩专家组对毕业设计答辩评议及成绩评定: " " " " " " " "答辩组长: (签章) " " " " " "年 月 日 " "学院毕业审核意见: " " " " " "院长: (签章) " "年 月 日 " 局域网网络安全设计 摘 要 近几年来,Internet技术日趋成熟,已经开始了从以提供和保证网络联通性为主要目 标的第一代Internet技术向以提供网络数据信息服务为特征的第二代Internet技术的过 渡。这些都促使了计算机网络互联技术迅速的大规模使用。众所周知,作为全球使用范 围最大的信息网,Internet自身协议的开放性极大地方便了各种计算机连网,拓宽了共 享资源。但是,由于在早期网络协议设计上对安全问题的忽视,以及在管理和使用上的 无政府状态,逐渐使Internet自身安全受到严重威胁,与它有关的安全事故屡有发生。 网络安全的威胁主要表现在:非授权访问,冒充合法用户,破坏数据完整性,干扰系统 正常运行,利用网络传播病毒,线路窃听等方面。因此本论文为企业构架网络安全体系 ,主要运用vlan划分、防火墙技术、病毒防护等技术,来实现企业的网络安全。 关键词:端口安全,网络,安全,防火墙,vlan II Abstract In recent years, Internet technology has matured, has begun to provide and guarantee from the network connectivity as the main target of the first generation of Internet technology to provide network data services for the characteristics of the second generation of Internet technology transition. These all contributed to the rapid computer networking technology of large- scale use. As we all know, the world's largest information network use of, Internet openness of their agreement greatly facilitate a variety of computer networking to broaden the sharing of resources. However, in the early design of network protocols on security issues of neglect, as well as in management and use of the anarchy, the Internet increasingly serious threat to their security, and its related security incidents happened quite frequently. Netw