车牌字符识别之Opencv神经网络应用c++

时间: 2023-07-19 11:32:54 浏览: 41
车牌字符识别是一个常见的计算机视觉应用,可以使用神经网络实现。在C++中,可以使用OpenCV的dnn模块来加载和运行深度学习模型来实现车牌字符识别。 以下是一个简单的车牌字符识别的示例: 1. 导入模型和权重文件,如下所示: ``` cv::dnn::Net net = cv::dnn::readNetFromTensorflow("model.pb", "weights.pb"); ``` 2. 读取车牌图像并进行预处理,如下所示: ``` cv::Mat plate = cv::imread("plate.jpg"); cv::resize(plate, plate, cv::Size(160, 40)); cv::Mat blob = cv::dnn::blobFromImage(plate, 1.0, cv::Size(160, 40), cv::Scalar(0,0,0), false, false); ``` 3. 将预处理后的图像输入到神经网络中,如下所示: ``` net.setInput(blob); ``` 4. 运行模型,如下所示: ``` cv::Mat output = net.forward(); ``` 5. 解析输出结果,如下所示: ``` std::vector<float> data(output.ptr<float>(), output.ptr<float>() + output.total()); std::vector<int> result; for (int i = 0; i < data.size(); i++) { if (data[i] > 0.9) { result.push_back(i); } } ``` 其中,result向量存储了识别出的字符的位置,可以根据这些位置抠出字符图像并进行字符识别。 以上是一个简单的车牌字符识别的示例,具体实现要根据具体的模型和应用场景进行调整。

相关推荐

最新推荐

基于树莓派opencv的人脸识别.pdf

2. 了解opencv,配置人脸识别相关环境 3. 收集人脸信息 4. 训练收集到的人脸信息 5. 将要分析的面部的捕获部分作为参数,并返回其可能的所有者,指示其ID以及识别器对此匹配的信任程度实现人脸的识别。

OpenCV识别图像上的线条轨迹

主要为大家详细介绍了OpenCV识别图像上的线条轨迹,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

使用卷积神经网络(CNN)做人脸识别的示例代码

上回书说到了对人脸的检测,这...OpenCV中也提供了相应的EigenFaceRecognizer库来实现该算法,除此之外还有FisherFaceRecognizer、LBPHFaceRecognizer以及最近几年兴起的卷积神经网络等。 卷积神经网络(CNN)的前级包

opencv3/C++图像边缘提取方式

今天小编就为大家分享一篇opencv3/C++图像边缘提取方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

opencv3/C++ 使用Tracker实现简单目标跟踪

今天小编就为大家分享一篇opencv3/C++ 使用Tracker实现简单目标跟踪,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

Oracle数据库实用教程第三章 PL/SQL程序设计.pptx

Oracle数据库实用教程第三章 PL/SQL程序设计.pptx

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

粒子群多目标算法matlab代码【MATLAB代码实现】定义优化问题参数

# 1. 粒子群多目标算法简介 ## 1.1 什么是粒子群算法? 粒子群算法是一种基于群体智能的优化算法,灵感来源于鸟群或鱼群等生物群体的行为。每个“粒子”代表问题空间中的一个候选解,而整个粒子群代表了候选解的一个群体。粒子在解空间中搜索最优解,通过个体的经验和群体的协作来不断调整自身位置和速度,从而逐步靠近最优解。 ## 1.2 粒子群算法在多目标优化中的应用 粒子群算法最初是针对单目标优化问题提出的,但后来被扩展应用到了多目标优化领域。与单目标优化不同,多目标优化需要考虑多个冲突的目标函数,因此粒子群算法的应用在多目标优化中具有一定的挑战性。 ## 1.3 粒子群多目标算法原理解

具体操作:你可以将 PyTorch 安装路径添加到环境变量中,或者使用 PyCharm 等集成开发环境来设置 Python 解释器。

好的,以下是具体的操作步骤: 添加 PyTorch 安装路径到环境变量中: 1. 打开计算机的属性,点击高级系统设置; 2. 在弹出的窗口中,点击环境变量; 3. 在系统变量中,找到 PATH 变量,点击编辑; 4. 在编辑系统变量窗口中,点击新建; 5. 输入 PyTorch 安装路径,例如 `C:\Program Files\PyTorch`,点击确定; 6. 点击确定,保存设置。 设置 PyCharm 的 Python 解释器: 1. 打开 PyCharm,点击 File -> Settings 进入设置界面; 2. 在设置界面中,选择 Project -> Project I

TS16949发展史及五大手册的意义.pptx

TS16949发展史及五大手册的意义.pptx