请参考以下代码:library(caret) library(klaR) data(iris) splt=0.80 trainIndex <- createDataPartition(iris$Species,p=split,list=FALSE) data_train <- iris[ trainIndex,] data_test <- iris[-trainIndex,] model <- NaiveBayes(Species~.,data=data_train) x_test <- data_test[,1:4] y_test <- data_test[,5] predictions <- predict(model,x_test) confusionMatrix(predictions$class,y_test)。准确无误地运用测试集与训练集写出R语言代码完成以下任务:①生成50×30的随机数据集和30个变量;②要生成三组线性模型的①,且这三组原始模型的系数不同;③(线性回归)分别计算这三组的CV值;④(岭回归)分别对这三组,分别画出在岭回归下横坐标为lambd,纵坐标为CV error或Prediction error的图;⑤基于一倍标准差准则给出参数值上限
时间: 2024-02-21 16:02:20 浏览: 52
plumberModel:使用最少的代码创建用于部署R模型的API
以下是代码:
①生成50×30的随机数据集和30个变量:
```{r}
set.seed(123)
data <- matrix(rnorm(50*30), ncol=30)
```
②要生成三组线性模型的①,且这三组原始模型的系数不同:
```{r}
set.seed(123)
b1 <- rnorm(30, 0, 1)
b2 <- rnorm(30, 1, 1)
b3 <- rnorm(30, 2, 1)
y1 <- data %*% b1 + rnorm(50, 0, 0.5)
y2 <- data %*% b2 + rnorm(50, 0, 0.5)
y3 <- data %*% b3 + rnorm(50, 0, 0.5)
```
③(线性回归)分别计算这三组的CV值:
```{r}
set.seed(123)
library(caret)
# Model 1
model1 <- train(data, y1, method="lm", trControl=trainControl(method="cv", number=10))
cv1 <- min(model1$results$RMSE)
# Model 2
model2 <- train(data, y2, method="lm", trControl=trainControl(method="cv", number=10))
cv2 <- min(model2$results$RMSE)
# Model 3
model3 <- train(data, y3, method="lm", trControl=trainControl(method="cv", number=10))
cv3 <- min(model3$results$RMSE)
```
④(岭回归)分别对这三组,分别画出在岭回归下横坐标为lambd,纵坐标为CV error或Prediction error的图:
```{r}
set.seed(123)
library(glmnet)
# Model 1
model1 <- cv.glmnet(data, y1, alpha=0, nfolds=10)
plot(model1, xvar="lambda", label=TRUE)
# Model 2
model2 <- cv.glmnet(data, y2, alpha=0, nfolds=10)
plot(model2, xvar="lambda", label=TRUE)
# Model 3
model3 <- cv.glmnet(data, y3, alpha=0, nfolds=10)
plot(model3, xvar="lambda", label=TRUE)
```
⑤基于一倍标准差准则给出参数值上限:
```{r}
set.seed(123)
sd_data <- apply(data, 2, sd)
param_upper <- 2 * sd_data
```
阅读全文