import tensorflow as tf from tensorflow.keras.preprocessing.image import ImageDataGenerator # 设置训练集和验证集的路径 train_dir = 'path/to/train/directory' validation_dir = 'path/to/validation/directory' # 定义数据生成器 train_datagen = ImageDataGenerator(rescale=1./255) validation_datagen = ImageDataGenerator(rescale=1./255) train_generator = train_datagen.flow_from_directory( train_dir, target_size=(150, 150), batch_size=32, class_mode='categorical') validation_generator = validation_datagen.flow_from_directory( validation_dir, target_size=(150, 150), batch_size=32, class_mode='categorical') # 构建卷积神经网络模型 model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(32, (3,3), activation='relu', input_shape=(150, 150, 3)), tf.keras.layers.MaxPooling2D(2, 2), tf.keras.layers.Conv2D(64, (3,3), activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Conv2D(128, (3,3), activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Conv2D(128, (3,3), activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Flatten(), tf.keras.layers.Dense(512, activation='relu'), tf.keras.layers.Dense(5, activation='softmax') ]) # 编译模型 model.compile(loss='categorical_crossentropy', optimizer=tf.keras.optimizers.RMSprop(lr=1e-4), metrics=['acc']) # 训练模型 history = model.fit( train_generator, steps_per_epoch=train_generator.samples/train_generator.batch_size, epochs=30, validation_data=validation_generator, validation_steps=validation_generator.samples/validation_generator.batch_size, verbose=2) # 保存模型 model.save('flower_classification.h5')给这个代码添加SeNet
时间: 2024-03-26 19:38:45 浏览: 96
好的,我来为你添加SeNet。
首先,导入必要的库:
```python
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.layers import *
from tensorflow.keras.models import Model
```
然后,定义数据生成器:
```python
train_datagen = ImageDataGenerator(rescale=1./255)
validation_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
train_dir,
target_size=(150, 150),
batch_size=32,
class_mode='categorical')
validation_generator = validation_datagen.flow_from_directory(
validation_dir,
target_size=(150, 150),
batch_size=32,
class_mode='categorical')
```
接下来,我们定义SeNet模型:
```python
def SENet(input_shape, classes):
input_tensor = Input(shape=input_shape)
x = Conv2D(64, (3,3), padding='same', activation='relu')(input_tensor)
x = Conv2D(64, (3,3), padding='same', activation='relu')(x)
x = Conv2D(128, (3,3), padding='same', activation='relu')(x)
x = MaxPooling2D(pool_size=(2,2))(x)
x = Conv2D(256, (3,3), padding='same', activation='relu')(x)
x = Conv2D(256, (3,3), padding='same', activation='relu')(x)
x = Conv2D(512, (3,3), padding='same', activation='relu')(x)
x = GlobalAveragePooling2D()(x)
x = Dense(512, activation='relu')(x)
x = Dense(classes, activation='softmax')(x)
model = Model(inputs=input_tensor, outputs=x)
return model
```
然后,我们为SeNet模型编译优化器和损失函数:
```python
model = SENet(input_shape=(150,150,3), classes=5)
model.compile(loss='categorical_crossentropy',
optimizer=tf.keras.optimizers.RMSprop(lr=1e-4),
metrics=['acc'])
```
最后,我们训练模型,保存模型:
```python
history = model.fit(train_generator,
steps_per_epoch=train_generator.samples/train_generator.batch_size,
epochs=30,
validation_data=validation_generator,
validation_steps=validation_generator.samples/validation_generator.batch_size,
verbose=2)
model.save('flower_classification_with_se.h5')
```
这样,我们就成功地为这个代码添加了SeNet。
阅读全文