squeeze and Excite网络层
时间: 2024-06-06 16:08:55 浏览: 45
可以用来做什么?
Squeeze and Excite网络层是一种用于卷积神经网络中的注意力机制,可以用来增强网络在某些特定特征上的表达能力,从而提高模型的准确性。具体来说,它可以学习到不同通道之间的相互依赖关系,进而在特征图上进行自适应加权,使得网络更加关注重要的特征,从而提高模型的泛化能力和鲁棒性。
相关问题
EfficientNet网络代码
以下是使用 Keras 实现的 EfficientNetB0 网络的代码示例:
```python
from keras.models import Model
from keras.layers import Input, Conv2D, BatchNormalization, Activation, Add, Dropout, GlobalAveragePooling2D, Dense
from keras.utils import plot_model
from keras import backend as K
# 定义 Swish 激活函数
def swish(x):
return K.sigmoid(x) * x
# 定义 Depthwise Convolution 模块
def depthwise_conv_block(inputs, pointwise_conv_filters, alpha=1.0, depth_multiplier=1, strides=(1, 1)):
pointwise_conv_filters = int(pointwise_conv_filters * alpha)
x = inputs
# Depthwise Convolution
x = DepthwiseConv2D((3, 3), padding='same', depth_multiplier=depth_multiplier, strides=strides)(x)
x = BatchNormalization()(x)
x = Activation(swish)(x)
# Pointwise Convolution
x = Conv2D(pointwise_conv_filters, (1, 1), padding='same', strides=(1, 1))(x)
x = BatchNormalization()(x)
x = Activation(swish)(x)
return x
# 定义 Squeeze-and-Excitation 模块
def squeeze_excite_block(inputs, filters, ratio=16):
# Squeeze
se = GlobalAveragePooling2D()(inputs)
se = Dense(filters // ratio, activation='relu')(se)
# Excite
se = Dense(filters, activation='sigmoid')(se)
x = inputs
x = Multiply()([x, se])
return x
# 定义 EfficientNetB0 网络
def EfficientNetB0(input_shape, classes):
inputs = Input(shape=input_shape)
# Stem
x = Conv2D(32, (3, 3), strides=(2, 2), padding='same')(inputs)
x = BatchNormalization()(x)
x = Activation(swish)(x)
# MBConv1
x = depthwise_conv_block(x, 16, alpha=1.0, depth_multiplier=1, strides=(1, 1))
# MBConv6
x = depthwise_conv_block(x, 24, alpha=1.0, depth_multiplier=1, strides=(2, 2))
x = squeeze_excite_block(x, 24)
x = depthwise_conv_block(x, 24, alpha=1.0, depth_multiplier=1, strides=(1, 1))
x = squeeze_excite_block(x, 24)
x = depthwise_conv_block(x, 24, alpha=1.0, depth_multiplier=1, strides=(1, 1))
x = squeeze_excite_block(x, 24)
# MBConv6
x = depthwise_conv_block(x, 40, alpha=1.0, depth_multiplier=1, strides=(2, 2))
x = squeeze_excite_block(x, 40)
x = depthwise_conv_block(x, 40, alpha=1.0, depth_multiplier=1, strides=(1, 1))
x = squeeze_excite_block(x, 40)
x = depthwise_conv_block(x, 40, alpha=1.0, depth_multiplier=1, strides=(1, 1))
x = squeeze_excite_block(x, 40)
# MBConv6
x = depthwise_conv_block(x, 80, alpha=1.0, depth_multiplier=1, strides=(2, 2))
x = squeeze_excite_block(x, 80)
x = depthwise_conv_block(x, 80, alpha=1.0, depth_multiplier=1, strides=(1, 1))
x = squeeze_excite_block(x, 80)
x = depthwise_conv_block(x, 80, alpha=1.0, depth_multiplier=1, strides=(1, 1))
x = squeeze_excite_block(x, 80)
x = depthwise_conv_block(x, 80, alpha=1.0, depth_multiplier=1, strides=(1, 1))
x = squeeze_excite_block(x, 80)
# MBConv6
x = depthwise_conv_block(x, 112, alpha=1.0, depth_multiplier=1, strides=(1, 1))
x = squeeze_excite_block(x, 112)
x = depthwise_conv_block(x, 112, alpha=1.0, depth_multiplier=1, strides=(1, 1))
x = squeeze_excite_block(x, 112)
x = depthwise_conv_block(x, 112, alpha=1.0, depth_multiplier=1, strides=(1, 1))
x = squeeze_excite_block(x, 112)
x = depthwise_conv_block(x, 112, alpha=1.0, depth_multiplier=1, strides=(1, 1))
x = squeeze_excite_block(x, 112)
# MBConv6
x = depthwise_conv_block(x, 192, alpha=1.0, depth_multiplier=1, strides=(2, 2))
x = squeeze_excite_block(x, 192)
x = depthwise_conv_block(x, 192, alpha=1.0, depth_multiplier=1, strides=(1, 1))
x = squeeze_excite_block(x, 192)
x = depthwise_conv_block(x, 192, alpha=1.0, depth_multiplier=1, strides=(1, 1))
x = squeeze_excite_block(x, 192)
x = depthwise_conv_block(x, 192, alpha=1.0, depth_multiplier=1, strides=(1, 1))
x = squeeze_excite_block(x, 192)
# MBConv6
x = depthwise_conv_block(x, 320, alpha=1.0, depth_multiplier=1, strides=(1, 1))
x = squeeze_excite_block(x, 320)
# Top
x = Conv2D(1280, (1, 1), padding='same')(x)
x = BatchNormalization()(x)
x = Activation(swish)(x)
# Average Pooling
x = GlobalAveragePooling2D()(x)
# Dropout
x = Dropout(0.2)(x)
# Output
outputs = Dense(classes, activation='softmax')(x)
# 创建模型
model = Model(inputs, outputs)
return model
```
注意,这个代码示例中只实现了 EfficientNetB0 网络的部分层,如果要实现完整的 EfficientNet 网络,需要根据具体的网络结构进行修改。
我在pycharm如何将SE注意力模块合理添加加到前面的cifar100实验网络结构中,以提高分类精度
在 PyCharm 中添加 SE(Squeeze-and-Excitation)注意力模块需要进行以下步骤:
1. 安装必要的库:在 PyCharm 中使用 pip 安装必要的库,例如 keras 和 tensorflow。
2. 定义 SE 模块:在您的代码中定义 SE 模块,以便可以在网络结构中使用它。SE 模块通常由 squeeze 和 excitation 两部分组成,其中 squeeze 部分用于将通道数降低,而 excitation 部分则对 squeeze 后的特征图进行加权。
3. 将 SE 模块添加到网络结构中:在您的代码中修改您的网络结构,以便将 SE 模块添加到所需的层中。例如,在 CIFAR100 实验中,您可以将 SE 模块添加到卷积层或全连接层中。
以下是一个示例代码片段,展示如何将 SE 模块添加到 CIFAR100 实验中的卷积层中:
```python
from tensorflow.keras.layers import Conv2D, Input, GlobalAveragePooling2D, Dense, Reshape, multiply, add
from tensorflow.keras import Model
def squeeze_excite_block(tensor, filters, ratio=16):
init = tensor
# Squeeze
channels = init._keras_shape[-1]
se_shape = (1, 1, channels)
se = GlobalAveragePooling2D()(init)
se = Reshape(se_shape)(se)
se = Dense(filters // ratio, activation='relu', kernel_initializer='he_normal', use_bias=True)(se)
se = Dense(filters, activation='sigmoid', kernel_initializer='he_normal', use_bias=True)(se)
# Excite
x = multiply([init, se])
return x
# CIFAR-100 model with SE block added to the convolutional layers
def cifar100_se_model(input_shape, num_classes):
input = Input(shape=input_shape)
x = Conv2D(64, (3, 3), padding='same', activation='relu')(input)
x = squeeze_excite_block(x, 64)
x = Conv2D(64, (3, 3), padding='same', activation='relu')(x)
x = squeeze_excite_block(x, 64)
x = Conv2D(128, (3, 3), padding='same', activation='relu')(x)
x = squeeze_excite_block(x, 128)
x = Conv2D(128, (3, 3), padding='same', activation='relu')(x)
x = squeeze_excite_block(x, 128)
x = Conv2D(256, (3, 3), padding='same', activation='relu')(x)
x = squeeze_excite_block(x, 256)
x = Conv2D(256, (3, 3), padding='same', activation='relu')(x)
x = squeeze_excite_block(x, 256)
x = GlobalAveragePooling2D()(x)
output = Dense(num_classes, activation='softmax')(x)
model = Model(input, output)
return model
```
在此示例中,squeeze_excite_block 函数定义了一个 SE 模块,该模块将在卷积层中使用。cifar100_se_model 函数定义了一个 CIFAR-100 模型,并将 squeeze_excite_block 函数添加到卷积层中。
阅读全文