对给定的 drug.csv 文件进行读取,仿照import pandas as pd import numpy as np from matplotlib import pyplot as plt from matplotlib.ticker import MultipleLocator datas = pd.read_csv(r'2015-2020.txt', index_col=0) datas = datas.sort_index(ascending=False) datas = pd.DataFrame(datas.values, index=range(1, 11), columns=datas.columns) data2020 = pd.read_csv(r'2020.txt', encoding='utf-8') def drawLines(): ax = plt.subplot(131) for date in datas.columns: plt.plot([10 - i for i in range(datas.shape[0])], datas[date], label=date) plt.ylim(0, 600000) ymajorLocator = MultipleLocator(50000) xmajorLocator = MultipleLocator(1) ax.yaxis.set_major_locator(ymajorLocator) ax.xaxis.set_major_locator(xmajorLocator) plt.title('2015-2020 年度票房 Top10 折线图') plt.xlabel('票房名次') plt.grid() plt.legend() def drawPie(): plt.subplot(233) plt.pie(datas['2019'], autopct='%1.1f%%') plt.title('2019 年度票房 Top10 饼图') plt.subplot(236) plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['font.family'] = 'sans-serif' plt.pie(data2020['boxoffice'], autopct='%1.1f%%', labels=data2020['name']) plt.title('2020 年度票房 Top10 饼图') if __name__ == '__main__': plt.subplots(figsize=(20, 8)) drawLines() drawPie() plt.show() 的样例代码,完成文件中数据的可 视化,绘制销售数据走势图和药品占比图
时间: 2024-02-06 15:03:11 浏览: 126
假设给定的 drug.csv 文件包含两列数据:药品名称和销售数量。可以使用 pandas 库读取并处理数据,然后使用 matplotlib 库进行可视化。
示例代码如下:
```python
import pandas as pd
import matplotlib.pyplot as plt
# 读取数据
data = pd.read_csv('drug.csv')
# 统计每种药品的销售数量
sales_data = data.groupby('药品名称')['销售数量'].sum()
# 绘制销售数据走势图
sales_data.plot(kind='line', figsize=(8, 6), xlabel='药品名称', ylabel='销售数量', title='药品销售数据走势图')
plt.show()
# 绘制药品占比图
sales_data.plot(kind='pie', figsize=(8, 8), autopct='%1.1f%%', title='药品销售占比图')
plt.show()
```
说明:
1. 使用 pandas 库的 `read_csv` 函数读取 drug.csv 文件,并将数据存储在 DataFrame 中。
2. 使用 DataFrame 的 `groupby` 方法按药品名称分组,并计算每组的销售数量之和。
3. 使用 `plot` 方法绘制销售数据走势图和药品占比图。在绘制药品占比图时,使用 `autopct` 参数显示每个扇形的占比。
相关问题
调试并运行下述案例代码,给代码做注释。在此基础上补充票房 TOP10 的柱状 图展示。 import pandas as pd import numpy as np from matplotlib import pyplot as plt from matplotlib.ticker import MultipleLocator datas = pd.read_csv(r'2015-2020.txt', index_col=0) datas = datas.sort_index(ascending=False) datas = pd.DataFrame(datas.values, index=range(1, 11), \ columns=datas.columns) data2020 = pd.read_csv(r'2020.txt') def drawLines(): ax = plt.subplot(131) for date in datas.columns: plt.plot([10 - i for i in range(datas.shape[0])], \ datas[date], label=date) plt.ylim(0, 600000) ymajorLocator = MultipleLocator(50000) xmajorLocator = MultipleLocator(1) ax.yaxis.set_major_locator(ymajorLocator) ax.xaxis.set_major_locator(xmajorLocator) plt.title('2015-2020 年度票房 Top10 折线图') plt.xlabel('票房名次') plt.grid() plt.legend() def drawPie(): plt.subplot(233) plt.pie(datas['2019'], autopct='%1.1f%%') plt.title('2019 年度票房 Top10 饼图') plt.subplot(236) plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['font.family'] = 'sans-serif' plt.pie(data2020['boxoffice'], autopct='%1.1f%%', \ labels=data2020['name']) plt.title('2020 年度票房 Top10 饼图') if __name__ == '__main__': plt.subplots(figsize=(20, 8)) drawLines() drawPie() plt.show()
```python
# 导入 pandas, numpy, pyplot 和 MultipleLocator 库
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.ticker import MultipleLocator
# 读取数据并按照时间降序排序
datas = pd.read_csv(r'2015-2020.txt', index_col=0)
datas = datas.sort_index(ascending=False)
# 将数据转换为 DataFrame 格式,索引是票房排名,列是年份
datas = pd.DataFrame(datas.values, index=range(1, 11), columns=datas.columns)
# 读取 2020 年数据
data2020 = pd.read_csv(r'2020.txt')
# 绘制 2015-2020 年度票房 Top10 折线图
def drawLines():
ax = plt.subplot(131) # 创建子图
for date in datas.columns: # 循环每年的票房数据
plt.plot([10 - i for i in range(datas.shape[0])], datas[date], label=date) # 绘制折线图
plt.ylim(0, 600000) # 设置 y 轴范围
ymajorLocator = MultipleLocator(50000) # 设置 y 轴主刻度
xmajorLocator = MultipleLocator(1) # 设置 x 轴主刻度
ax.yaxis.set_major_locator(ymajorLocator) # 设置 y 轴主刻度
ax.xaxis.set_major_locator(xmajorLocator) # 设置 x 轴主刻度
plt.title('2015-2020 年度票房 Top10 折线图') # 设置标题
plt.xlabel('票房名次') # 设置 x 轴标签
plt.grid() # 显示网格线
plt.legend() # 显示图例
# 绘制 2019 年度票房 Top10 饼图和 2020 年度票房 Top10 饼图
def drawPie():
plt.subplot(233) # 创建子图
plt.pie(datas['2019'], autopct='%1.1f%%') # 绘制饼图
plt.title('2019 年度票房 Top10 饼图') # 设置标题
plt.subplot(236) # 创建子图
plt.rcParams['font.sans-serif'] = ['SimHei'] # 设置字体
plt.rcParams['font.family'] = 'sans-serif'
plt.pie(data2020['boxoffice'], autopct='%1.1f%%', labels=data2020['name']) # 绘制饼图
plt.title('2020 年度票房 Top10 饼图') # 设置标题
if __name__ == '__main__':
plt.subplots(figsize=(20, 8)) # 创建画布
drawLines() # 绘制折线图
drawPie() # 绘制饼图
plt.show() # 显示图形
```
补充票房 TOP10 的柱状图展示如下:
```python
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
# 读取数据并按照时间降序排序
datas = pd.read_csv(r'2015-2020.txt', index_col=0)
datas = datas.sort_index(ascending=False)
datas = pd.DataFrame(datas.values, index=range(1, 11), columns=datas.columns)
# 绘制柱状图
plt.subplots(figsize=(20, 8))
plt.bar(datas.index, datas['2020'])
plt.xticks(datas.index, datas.index)
plt.title('2020 年度票房 Top10 柱状图')
plt.xlabel('票房排名')
plt.ylabel('票房(万元)')
plt.show()
```
柱状图展示如下:
注意:柱状图只显示了 2020 年的数据。如果需要同时显示所有年份的数据,可以将 `datas` DataFrame 中的数据按照年份分组,再分别绘制柱状图,并将柱状图放在同一张图中。
优化这个代码import xarray as xr import netCDF4 as nc import pandas as pd import numpy as np import datetime import matplotlib.pyplot as plt import cartopy.mpl.ticker as cticker import cartopy.crs as ccrs import cartopy.feature as cfeature ds = xr.open_dataset('C:/Users/cindy/Desktop/SP.nc', engine='netcdf4') # 读取原始数据 ds_temp = xr.open_dataset('C:/Users/cindy/Desktop/SP.nc') # 区域提取* south_asia = ds_temp.sel(latitude=slice(38, 28), longitude=slice(75, 103)) indian_ocean = ds_temp.sel(latitude=slice(5, -15), longitude=slice(60, 100)) # 高度插值 south_asia_200hpa = south_asia.t.interp(level=200) indian_ocean_200hpa = indian_ocean.t.interp(level=200) south_asia_400hpa = south_asia.t.interp(level=400) indian_ocean_400hpa = indian_ocean.t.interp(level=400) # 区域平均 TTP = south_asia_400hpa.mean(dim=('latitude', 'longitude'))#.values TTIO = indian_ocean_400hpa.mean(dim=('latitude', 'longitude'))# TTP_200hpa = south_asia_200hpa.mean(dim=('latitude', 'longitude')) TTIO_200hpa = indian_ocean_200hpa.mean(dim=('latitude', 'longitude')) tlup=(TTP-TTIO)-(TTP_200hpa-TTIO_200hpa)-(-5.367655815) # 定义画图区域和投影方式 fig = plt.figure(figsize=[10, 8]) ax = plt.axes(projection=ccrs.PlateCarree()) # 添加地图特征 ax.set_extent([60, 140, -15, 60], crs=ccrs.PlateCarree()) ax.add_feature(cfeature.COASTLINE.with_scale('50m'), linewidths=0.5) ax.add_feature(cfeature.LAND.with_scale('50m'), facecolor='lightgray') ax.add_feature(cfeature.OCEAN.with_scale('50m'), facecolor='white') # 画距平场 im = ax.contourf(TTP_200hpa, TTP, tlup, cmap='coolwarm', levels=np.arange(-4, 4.5, 0.5), extend='both') # 添加色标 cbar = plt.colorbar(im, ax=ax, shrink=0.8) cbar.set_label('Temperature anomaly (°C)') # 添加经纬度坐标轴标签 ax.set_xticks(np.arange(60, 105, 10), crs=ccrs.PlateCarree()) ax.set_yticks(np.arange(-10, 40, 10), crs=ccrs.PlateCarree()) lon_formatter = cticker.LongitudeFormatter() lat_formatter = cticker.LatitudeFormatter() ax.xaxis.set_major_formatter(lon_formatter) ax.yaxis.set_major_formatter(lat_formatter) # 添加标题和保存图片 plt.title('Temperature anomaly at 400hPa over South Asia and the Indian Ocean') plt.savefig('temperature_anomaly.png', dpi=300) plt.show()
1. 首先,可以将多个导入语句合并为一行,以提高代码的可读性。例如:
```
import xarray as xr, netCDF4 as nc, pandas as pd, numpy as np, datetime
import matplotlib.pyplot as plt
import cartopy.mpl.ticker as cticker, cartopy.crs as ccrs, cartopy.feature as cfeature
```
2. 可以在代码中删除不必要的变量,例如 `ds` 和 `ds_temp` 都是指向同一个文件的数据集,因此只需要保留一个即可。
3. 对于数据集的区域提取和高度插值操作,可以将它们合并成一个链式操作,以减少代码行数。例如:
```
south_asia = ds.sel(latitude=slice(38, 28), longitude=slice(75, 103)).t.interp(level=200)
indian_ocean = ds.sel(latitude=slice(5, -15), longitude=slice(60, 100)).t.interp(level=200)
```
4. 对于计算平均值的操作,可以使用 `reduce` 函数,以减少代码行数。例如:
```
TTP, TTIO = np.array([south_asia_400hpa, indian_ocean_400hpa]).reduce(lambda x, y: x.mean(dim=('latitude', 'longitude')), axis=0)
TTIO_200hpa = indian_ocean_200hpa.mean(dim=('latitude', 'longitude'))
```
5. 可以将一些常量定义为全局变量或者类变量,以方便后续使用。例如:
```
LEVEL = 400
SLICE_LATITUDE = slice(38, 28)
SLICE_LONGITUDE = slice(75, 103)
SLICE_IO_LATITUDE = slice(5, -15)
SLICE_IO_LONGITUDE = slice(60, 100)
TITLE = 'Temperature anomaly at {}hPa over South Asia and the Indian Ocean'.format(LEVEL)
```
6. 可以将绘图的代码封装为一个函数,以提高代码的可读性和复用性。例如:
```
def plot_temperature_anomaly(TTP, TTIO, TTP_200hpa, TTIO_200hpa, tlup):
fig = plt.figure(figsize=[10, 8])
ax = plt.axes(projection=ccrs.PlateCarree())
ax.set_extent([60, 140, -15, 60], crs=ccrs.PlateCarree())
ax.add_feature(cfeature.COASTLINE.with_scale('50m'), linewidths=0.5)
ax.add_feature(cfeature.LAND.with_scale('50m'), facecolor='lightgray')
ax.add_feature(cfeature.OCEAN.with_scale('50m'), facecolor='white')
im = ax.contourf(TTP_200hpa, TTP, tlup, cmap='coolwarm', levels=np.arange(-4, 4.5, 0.5), extend='both')
cbar = plt.colorbar(im, ax=ax, shrink=0.8)
cbar.set_label('Temperature anomaly (°C)')
ax.set_xticks(np.arange(60, 105, 10), crs=ccrs.PlateCarree())
ax.set_yticks(np.arange(-10, 40, 10), crs=ccrs.PlateCarree())
lon_formatter = cticker.LongitudeFormatter()
lat_formatter = cticker.LatitudeFormatter()
ax.xaxis.set_major_formatter(lon_formatter)
ax.yaxis.set_major_formatter(lat_formatter)
plt.title(TITLE)
plt.savefig('temperature_anomaly.png', dpi=300)
plt.show()
```
7. 最后,可以将所有操作封装为一个函数,以方便调用。例如:
```
def calculate_and_plot_temperature_anomaly(filename):
ds = xr.open_dataset(filename)
south_asia = ds.sel(latitude=SLICE_LATITUDE, longitude=SLICE_LONGITUDE).t.interp(level=LEVEL)
indian_ocean = ds.sel(latitude=SLICE_IO_LATITUDE, longitude=SLICE_IO_LONGITUDE).t.interp(level=LEVEL)
south_asia_200hpa = south_asia.t.interp(level=200)
indian_ocean_200hpa = indian_ocean.t.interp(level=200)
TTP, TTIO = np.array([south_asia, indian_ocean]).reduce(lambda x, y: x.mean(dim=('latitude', 'longitude')), axis=0)
TTP_200hpa = south_asia_200hpa.mean(dim=('latitude', 'longitude'))
TTIO_200hpa = indian_ocean_200hpa.mean(dim=('latitude', 'longitude'))
tlup=(TTP-TTIO)-(TTP_200hpa-TTIO_200hpa)-(-5.367655815)
plot_temperature_anomaly(TTP, TTIO, TTP_200hpa, TTIO_200hpa, tlup)
```
这样,我们就可以通过调用 `calculate_and_plot_temperature_anomaly(filename)` 函数来计算和绘制温度距平图了。
阅读全文