[Matlab科学计算] 开发解二阶常系数常微分非齐次方程u′′ + pu' + qu = f(x)的源代码,a<=x<=b
时间: 2023-12-03 22:46:54 浏览: 93
以下是解二阶常系数常微分非齐次方程的 Matlab 源代码:
```matlab
function [x,u]=solveODE(p,q,f,a,b,alpha,beta,n)
% p, q, f: 常系数常微分方程的系数函数
% a, b: 自变量x的区间
% alpha, beta: 边界条件
% n: 离散化的节点数
h=(b-a)/(n-1); % 步长
x=a:h:b; % 离散化的节点
u=zeros(n,1); % 数值解
A=zeros(n,n); % 系数矩阵
b=zeros(n,1); % 右端项
for i=2:n-1
A(i,i-1)=1/h^2-p(x(i))/(2*h); % 非对角线元素
A(i,i)=-2/h^2+q(x(i)); % 对角线元素
A(i,i+1)=1/h^2+p(x(i))/(2*h); % 非对角线元素
b(i)=f(x(i)); % 右端项
end
% 处理边界条件
A(1,1)=1; b(1)=alpha;
A(n,n)=1; b(n)=beta;
u=A\b; % 解线性方程组
end
```
其中,`p(x)`,`q(x)`,`f(x)` 分别为二阶常系数常微分非齐次方程中的系数函数和非齐次项函数;`a` 和 `b` 分别为自变量 `x` 的区间;`alpha` 和 `beta` 分别为边界条件;`n` 为离散化的节点数。函数返回解析的节点 `x` 和数值解 `u`。
使用该函数,可以按照以下代码调用:
```matlab
% 示例:解 u'' - 2u' + u = x,u(0)=0,u(1)=1
p=@(x)-2; q=@(x)1; f=@(x)x;
a=0; b=1; alpha=0; beta=1; n=100;
[x,u]=solveODE(p,q,f,a,b,alpha,beta,n);
plot(x,u);
```
以上代码是解二阶常系数常微分非齐次方程的基本框架,可以根据不同的系数函数和非齐次项函数进行调整。
阅读全文
相关推荐

















