利用decision transformer做出决策的步骤
时间: 2023-10-03 12:10:02 浏览: 152
以下是利用Decision Transformer做出决策的基本步骤:
1. 数据准备:首先需要准备好决策所需的数据,包括问题和相关的信息。这些数据可以是结构化或非结构化的,可以是文本、图片或其他类型的数据。
2. 模型构建:将Decision Transformer模型构建为一个神经网络模型。这个模型可以包含多个Transformer编码器和解码器,以及其他的神经网络层。
3. 训练模型:利用准备好的数据来训练Decision Transformer模型。这个过程涉及到选择适当的损失函数、优化器和超参数,以及调整模型的结构和参数。
4. 预测结果:利用训练好的Decision Transformer模型来预测决策结果。这个过程包括输入问题和相关信息,然后模型输出一个决策结果。
5. 评估和优化:对模型的性能进行评估和优化。这个过程可以包括对模型的准确性、速度和可扩展性进行测试,以及对模型的结构和参数进行优化。
需要注意的是,Decision Transformer是一种新的模型,其具体实现细节和最佳实践还需要进一步的研究和探索。
相关问题
Decision transformer
Decision Transformer是一个将强化学习问题转化为条件序列建模的体系结构。它利用了Transformer体系结构的简单性和可伸缩性,以及语言建模方面的相关经验,如GPT-x和BERT。与传统的强化学习方法不同,Decision Transformer通过利用随机屏蔽Transformer输出来确定最优操作。通过将自回归模型设置在期望的回报、过去的状态和行动上,Decision Transformer模型可以生成实现期望回报的未来行动。尽管简单,Decision Transformer在Atari、OpenAI Gym和Key-to-Door任务上的性能与或超过了最先进的强化学习基线模型。[1]
Decision Transformer的网络结构可以看作是Transformer的Decoder部分的修改,主要使用了masked multi-head self-attention。它是一种纯监督学习方法,用于解决离线强化学习问题。与传统的马尔科夫决策过程(MDP)不同,Decision Transformer在训练时可以获取非常长期的信息,不再满足马尔科夫性。[2][3]
Decision Transformer
Decision Transformer是一个将强化学习问题转化为条件序列建模的体系结构。它利用了Transformer体系结构的简单性和可伸缩性,以及语言建模方面的相关经验,如GPT-x和BERT。与传统的强化学习方法不同,Decision Transformer通过利用随机屏蔽Transformer输出来确定最优操作。通过将自回归模型设置在期望的回报、过去的状态和行动上,Decision Transformer可以生成实现期望回报的未来行动。尽管简单,Decision Transformer在Atari、OpenAI Gym和Key-to-Door任务上的性能与或超过了最先进的强化学习基线模型。\[1\]
Decision Transformer的网络结构可以看作是Transformer的Decoder部分的修改,主要使用了masked multi-head self-attention。\[2\]它是一种纯监督学习方法,用于解决离线强化学习问题。与传统的马尔科夫决策过程(MDP)不同,Decision Transformer在训练时可以获取非常长期的信息,不再满足马尔科夫性。\[3\]
#### 引用[.reference_title]
- *1* [决策Transformer:通过序列建模的强化学习](https://blog.csdn.net/zzh1464501547/article/details/117756403)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
- *2* *3* [NeurIPS论文解读|Decision Transformer: 通过序列建模解决离线强化学习问题](https://blog.csdn.net/m0_55289267/article/details/125871135)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文
相关推荐
















