python 中 spark.sql().collect()
时间: 2024-03-17 16:44:21 浏览: 86
spark sql 代码实现
在 Python 中使用 PySpark 的时候,我们可以使用 `spark.sql()` 方法来执行 SQL 查询。`spark.sql()` 方法返回一个 `DataFrame` 对象,该对象代表了查询的结果集。如果我们想将结果集以 Python 的数据结构的形式返回,可以使用 `collect()` 方法。`collect()` 方法将会把 `DataFrame` 中的所有数据都读取到 Python 中的一个列表中。这种方法适用于查询结果集较小的情况,因为将所有结果都读取到内存中可能会导致内存不足的问题。
以下是一个示例:
```python
from pyspark.sql import SparkSession
spark = SparkSession.builder.appName("example").getOrCreate()
# 创建一个 DataFrame
df = spark.read.format("csv").option("header", True).load("data.csv")
# 执行 SQL 查询
result_df = spark.sql("SELECT * FROM table WHERE column = value")
# 将结果集以 Python 的列表的形式返回
result_list = result_df.collect()
```
在这个例子中,我们首先使用 `SparkSession` 对象创建了一个 Spark 应用程序。然后,我们使用 `spark.read()` 方法从 CSV 文件中读取数据,并创建了一个 `DataFrame` 对象。接下来,我们使用 `spark.sql()` 方法执行了一个 SQL 查询,并将结果保存到一个新的 `DataFrame` 对象中。最后,我们使用 `collect()` 方法将结果集以 Python 的列表的形式返回。
阅读全文