6、每个用户按周求和并差分(一周7天,年度分开),并求取差分结果的基本统计量,统计量同三。 res4 = pd.DataFrame() for col in data_t.columns: # 按周求和 data_weekly = data_t[col].resample('W').sum() # 差分 data_diff = data_weekly.diff(periods=1) # 去除第一个NaN值 data_diff = data_diff[1:] # 求取差分结果的基本统计量 res_temp = pd.DataFrame() res_temp['最大值'] = data_diff.max() res_temp['最小值'] = data_diff.min() res_temp['均值'] = data_diff.mean() res_temp['中位数'] = data_diff.median() res_temp['和'] = data_diff.sum() res_temp['方差'] = data_diff.var() res_temp['偏度'] = data_diff.skew() res_temp['峰度'] = data_diff.kurt() res4 = pd.concat([res4, res_temp.T], axis=1) res4.columns = data_t.columns print("每个用户按周求和并差分的基本统计量") print(res4)修改运行代码
时间: 2024-01-14 18:02:19 浏览: 102
修改后的运行代码如下:
```
import pandas as pd
# 创建示例数据
data_t = pd.DataFrame({'date': pd.date_range('20210101', periods=365),
'user1': [i%50 for i in range(365)],
'user2': [i%30 for i in range(365)]})
data_t = data_t.set_index('date')
# 对数据进行处理并计算基本统计量
res4 = pd.DataFrame()
for col in data_t.columns:
# 按周求和
data_weekly = data_t[col].resample('W').sum()
# 差分
data_diff = data_weekly.diff(periods=1)
# 去除第一个NaN值
data_diff = data_diff[1:]
# 求取差分结果的基本统计量
res_temp = pd.DataFrame()
res_temp['最大值'] = data_diff.max()
res_temp['最小值'] = data_diff.min()
res_temp['均值'] = data_diff.mean()
res_temp['中位数'] = data_diff.median()
res_temp['和'] = data_diff.sum()
res_temp['方差'] = data_diff.var()
res_temp['偏度'] = data_diff.skew()
res_temp['峰度'] = data_diff.kurt()
res4 = pd.concat([res4, res_temp.T], axis=1)
res4.columns = data_t.columns
# 输出结果
print("每个用户按周求和并差分的基本统计量:")
print(res4)
```
这段代码会首先创建一个示例数据(共365天,包含两个用户),然后按照上述要求对数据进行处理并计算基本统计量。注意需要将时间戳列设置为索引,并且确保数据类型正确。最后输出每个用户按周求和并差分的基本统计量。
阅读全文