基于pytorch框架写一个deepsurv的模型代码来进行生存分析
时间: 2024-05-04 12:15:24 浏览: 299
以下是基于PyTorch框架写的一个Deepsurv模型代码,用于进行生存分析:
```python
import torch
import torch.nn as nn
import torch.optim as optim
class Deepsurv(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(Deepsurv, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, output_dim)
self.activation = nn.ReLU()
def forward(self, x):
x = self.fc1(x)
x = self.activation(x)
x = self.fc2(x)
return x
def negative_log_likelihood(preds, events):
hazard_ratio = torch.exp(preds)
log_risk = torch.log(torch.cumsum(hazard_ratio, dim=1))
uncensored_likelihood = (preds.T - log_risk.T).T
censored_likelihood = uncensored_likelihood * events
neg_likelihood = -torch.sum(censored_likelihood)
return neg_likelihood
def train(model, optimizer, train_loader, epochs):
for epoch in range(epochs):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, events = data
optimizer.zero_grad()
outputs = model(inputs)
loss = negative_log_likelihood(outputs, events)
loss.backward()
optimizer.step()
running_loss += loss.item()
print('Epoch %d loss: %.3f' % (epoch + 1, running_loss / len(train_loader)))
input_dim = 10
hidden_dim = 20
output_dim = 1
lr = 0.001
epochs = 10
batch_size = 32
model = Deepsurv(input_dim, hidden_dim, output_dim)
optimizer = optim.Adam(model.parameters(), lr=lr)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
train(model, optimizer, train_loader, epochs)
```
其中,Deepsurv类是我们定义的模型,包含两个全连接层和一个ReLU激活函数。negative_log_likelihood函数是用来计算负对数似然损失的,它首先计算每个样本的hazard ratio,然后计算log risk和uncensored likelihood,最后根据事件状态计算censored likelihood,并将其相加并取负作为损失函数。train函数是训练模型的函数,它使用Adam优化器对模型进行训练。
在使用这个代码之前,需要将数据集转换为PyTorch张量或数据集。具体而言,需要将生存时间和事件状态分别转换为张量,并使用torch.utils.data.TensorDataset或torch.utils.data.Dataset将它们组合成数据集。然后,可以使用torch.utils.data.DataLoader将数据集加载到模型中进行训练。
阅读全文